SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Jeschke P, Nauen R, Schindler M and Elbert A, Overview of the status and global strategy for neonicotinoids, J Agric Food Chem 59:28972908 (2011).
  • 2
    Magalhaes LC, Hunt TE and Siegfried BD, Efficacy of neonicotinoid seed treatments to reduce soybean aphid populations under field and controlled conditions in Nebraska. J Econ Entomol 102:187195 (2009).
  • 3
    Maienfisch P, Angst M, Brandl F, Fischer W, Hofer D, Kayser H, et al., Chemistry and biology of thiamethoxam: A second generation neonicotinoid. Pest Manag Sci 57:906913 (2001).
  • 4
    Elbert A, Haas M, Springer B, Thielert W and Nauen R, Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:10991110 (2008).
  • 5
    Du ZB, Miao J, Wu YQ, Chen XL, Li GL, Gong ZJ, et al., Effectiveness of imidacloprid and thiamethoxam in controlling wheat aphids and the dynamics of pesticide residues in wheat leaves. Chin J Appl Entomol 48:16821687 (2011).
  • 6
    Desneux N, Decourtye A and Delpuech JM, The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81106 (2007).
  • 7
    Liu YQ, Lu YH, Wu KM, Wyckhuys KAG and Xue FS, Lethal and sublethal effects of endosulfan on Apolygus lucorum (Hemiptera: Miridae). J Econ Entomol 101:18051810 (2008).
  • 8
    Clark DC and Haynes KF, Sublethal effects of cypermethrin on chemical communication, courtship, and oviposition in the cabbage looper (Lepidoptera: Noctuidae). J Econ Entomol 85:17711778 (1992).
  • 9
    Stark JD and Banks JE, Population-level effects of pesticides and other toxicants on arthropods. Annu Rev Entomol 48:505509 (2003).
  • 10
    Lashkari MR, Sahragard A and Ghadamyari M, Sublethal effects of imidacloprid and pymetrozine on population growth parameters of cabbage aphid, Brevicoryne brassicae, on rapeseed, Brassica napus L. Insect Sci 14:207212 (2007).
  • 11
    Mclean DL and Kinsey MG, A technique for electronically recording aphid feeding and salivation. Nature 202:13581359 (1964).
  • 12
    Mclean DL and Kinsey MG, Identification of electrically recorded curve patterns associated with salivation and ingestion. Nature 205:11301131 (1965).
  • 13
    Tjallingii WF, Eletronic recording of penetration behavior by aphids. Entomol Exp Appl 24:721730 (1978).
  • 14
    Backus EA, History, Development and Applications of the AC Electronic Insect Feeding Monitors, ed. by Ellsbury MM, Backus EA and Ullman DE. Thomas Say Publications in Entomology, Entomological Society of America, Lanham, MD, pp. 115 (1994).
  • 15
    Garzo E, Soria C, Gomez-Guillamon ML and Fereres A, Feeding behavior of Aphis gossypii resistant accessions of different melon genotypes (Cucumis melo). Phytoparasitica 30:129140 (2002).
  • 16
    Alvarez AE, Tjallingii WF, Garzo E, Vleeshouwers V, Dicke M and Vosman B, Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to the aphid Myzus persicae. Entomol Exp Appl 121:145157 (2006).
  • 17
    Miao J, Wu YQ, Xu WG, Hu L, Yu ZX and Xu QF, The impact of transgenic wheat expressing GNA (snowdrop lectin) on the aphids Sitobion avenae, Schizaphis graminum, and Rhopalosiphum padi. Environ Entomol 40:743748 (2011).
  • 18
    Nisbet AJ, Woodford JAT, Strang RHC and Connolly JD, Systemic antifeedant effects of azadirachtin on the peachpotato aphid Myzus persicae. Entomol Exp Appl 68:8798 (1993).
  • 19
    Harrewijn P and Kayser H, Pymetrozine, a fast-acting and selective inhibitor of aphid feeding. In-situ studies with electronic monitoring of feeding behaviour. Pestic Sci 49:130140 (1997).
  • 20
    Martin B, Collar JL, Tjallingii WF and Fereres A, Intracellular ingestion and salivation by aphids may cause acquisition and inoculation of non-persistently transmitted plant viruses. J GenVirol 78:27012705 (1997).
  • 21
    Collar JL and Fereres A, Nonpersistent virus transmission efficiency determined by aphid probing behavior during intracellular punctures. Environ Entomol 27:583591(1998).
  • 22
    Tan Y, Biondi A, Desneux N and Gao XW, Assessment of physiological sublethal effects of imidacloprid on the mirid bug Apolygus lucorum (Meyer-Dür). Ecotoxicology 21:19891997 (2012).
  • 23
    LeOra, POLO-PC a User's Guide to Probit or Logit Analysis. LeOra, Berkeley, CA (1987).
  • 24
    Shi XB, Jiang LL, Wang HY, Qiao K, Wang D and Wang KY, Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Manag Sci 67:15281533 (2011).
  • 25
    Weisenburger DD, Human health-effects of agrichemicals use. Hum Pathol 24:571576 (1993).
  • 26
    Feyereisen R, Molecular biology of insecticide resistance. Toxicol Lett 82:8390 (1995).
  • 27
    Liang P, Tan Y, Biondi A, Desneux N and Gao XW, Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21:18891898 (2012).
  • 28
    Desneux N, Decourtye A and Delpuech JM, The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81106 (2007).
  • 29
    Daniels M, Bale JS, Newbury HJ, Lind RJ and Pritchard J, A sublethal dose of thiamethoxam causes a reduction in xylem feeding by the bird cherry-oat aphid (Rhopalosiphum padi), which is associated with dehydration and reduced performance. J Insect Physiol 55:758765 (2009).
  • 30
    Gerami S, Jahromi KT, Ashouri A, Rasoulian G and Heidari A, Sublethal effects of imidacloprid and pymetrozine on the life table parameters of Aphis gossypii Glover (Homoptera: Aphididae). Commun Agric Appl Biol Sci 70:779785 (2005).
  • 31
    Bortolotti L, Monanari R, Marcelino J and Porrini P, Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull Insectol 56:6367 (2003).
  • 32
    Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G and Smagghe G, Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19:207215 (2010).
  • 33
    Haynes KF and Baker TC, Sublethal effects of permethrin on the chemical communication system of the pink bollworm moth. Arch Insect Biochem Physiol 2:283293 (1985).
  • 34
    Delpuech JM, Legallet B and Fouillet P, Partial compensation of the sublethal effect of deltamethrin on sex phermonal communication of Trichogramma brassicae. Chemosphere 42:985991 (2001).
  • 35
    Haynes KF, Sublethal effects of neurotoxic insecticides on insect behavior. Annu Rev Entomol 33:149168 (1988).
  • 36
    Clark DC and Haynes KF, Sublethal effects of cypermethrin on chemical communication, courtship, and oviposition in the cabbage looper (Lepidoptera: Noctuidae). J Econ Entomol 85:17711778 (1992).
  • 37
    Irving SN and Wyatt IJ, Effects of sublethal doses of pesticides on the oviposition behaviour of Encarsia formosa. Ann Appl Biol 75:5762 (1973).
  • 38
    Nauen R, Behaviour modifying effects of low systemic concentrations of imidacloprid on Myzus persicae with special reference to an antifeeding response. Pestic Sci 44:145153 (1995).
  • 39
    Devine GJ, Harling ZK, Scarr AW and Devonshire AL, Lethal and sublethal effects of imidacloprid on nicotine-tolerant Myzus nicotianae and Myzus persicae. Pestic Sci 48:5762 (1996).
  • 40
    Nauen R, Koob B and Elbert A, Antifeedant effects of sublethal dosages of imidacloprid on Bemisia tabaci. Entomol Exp App 88:287293 (1998).
  • 41
    He Y, Zhao J, Zhang Y, Desneux N and Wu K, Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 21:12911300 (2012).