• 1
    Roush RT and McKenzie JA, Ecological genetics of insecticide and acaricide resistance. Ann Rev Entomol 32:361380 (1987).
  • 2
    Russell RJ, Claudianos C, Campbell PM, Horne I, Sutherland TD and Oakeshott JG, Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pestic Biochem Physiol 79:8493 (2004).
  • 3
    Lima EP, Paiva MHS, de Araújo AP, da Silva EVG, da Silva UM, de Oliveira LN, et al., Insecticide resistance in Aedes aegypti populations from Ceará, Brazil. Parasites Vectors 4:5 (2011).
  • 4
    Perry T, Batterham P and Daborn PJ, The biology of insecticidal activity and resistance. Insect Biochem Mol Biol 41:411422 (2011).
  • 5
    Hartley CJ, Newcomb RD, Russell RJ, Yong CG, Stevens JR, Yeates DK, et al., Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proc Natl Acad Sci U S A 103:87578762 (2006).
  • 6
    Wang Q, Li M, Pan J, Di M, Liu Q, Meng F, et al., Diversity and frequencies of genetic mutations involved in insecticide resistance in field populations of the house fly (Musca domestica L.) from China. Pestic Biochem Physiol 102:153159 (2012).
  • 7
    Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W and Tirry L, Acaricide resistance mechanisms in the two-spotted mite Tetranychus urticae and other important Acari: A review. Insect Biochem Mol Biol 40:563572 (2010).
  • 8
    Scott JG and Kasai S, Evolutionary plasticity of monooxygenase-mediated resistance. Pestic Biochem Physiol 78:171178 (2004).
  • 9
    Li X, Schuler MA and Berenbaum MR, Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Ann Rev Entomol 52:231253 (2007).
  • 10
    Farnsworth CA, Teese MG, Yuan G, Li Y, Scott C, Zhang X, et al., Esterase-based metabolic resistance to insecticides in heliothine and spodopteran pests. J Pestic Sci 35:275289 (2010).
  • 11
    Heckel D, Molecular genetics of insecticide resistance in Lepidoptera, in Molecular Biology and Genetics of the Lepidoptera, ed. by Goldsmith MR and Marec F. CRC Press, Boca Raton, pp. 239270 (2012).
  • 12
    Han Y, Wu S, Li Y, Liu J-W, Campbell PM, Farnsworth C, et al., Proteomic and molecular analyses of esterases associated with monocrotophos resistance in Helicoverpa armigera. Pestic Biochem Physiol 104:243251 (2012).
  • 13
    Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, et al., A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15:615636 (2006).
  • 14
    Oakeshott JG, Johnson RM, Berenbaum MR, Ranson H, Cristino RS and Claudianos C, Metabolic enzymes associated with xenobiotic and chemosensory responses in Nasonia vitripennis. Insect Mol Biol 19:147163 (2010).
  • 15
    Lee SH, Kang JS, Min JS, Yoon KS, Strycharz JP, Johnson R, et al., Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism. Insect Mol Biol 19:599615 (2010).
  • 16
    Strode C, de Melo-Santos M, Magalhães T, Araújo A and Ayres C, Expression profile of genes during resistance reversal in a temephos selected strain of the Dengue vector, Aedes aegypti. PLoS One 7:e39439 (2012).
  • 17
    Saavedra-Rodriguez K, Suarez AF, Salas IF, Strode C, Ranson H, Hemingway J, et al., Transcription of detoxification genes after permethrin selection in the mosquito Aedes aegypti. Insect Mol Biol 21:6177 (2012).
  • 18
    Müller P, Warr E, Stevenson B, Pignatelli PM, Morgan JC, Steven A, et al., Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet 4:e1000286 (2008).
  • 19
    Ranson H, Paton MG, Jensen B, McCarroll L, Vaughan A, Hogan JR, et al., Genetic mapping of genes conferring permethrin resistance in the malaria vector, Anopheles gambiae. Insect Mol Biol 13:379386 (2004).
  • 20
    Wondji CS, Morgan J, Coetzee M, Hunt RH, Steen K, Black IV WC, et al., Mapping a quantitative trait locus (QTL) conferring pyrethroid resistance in the Afrcian malaria vector Anopheles funestus. BMC Genomics 8:34 (2007).
  • 21
    Saavedra-Rodriguez K, Strode C, Suarez AF, Salas IF, Ranson H, Hemingway J, et al., Quantitative trait mapping of genome regions controlling permethrin resistance in the mosquito Aedes aegypti. Genetics 180:11371152 (2008).
  • 22
    Irving H, Riveron JM, Ibrahim SS, Lobo NF and Wondji CS, Positional cloning of rp2 QTL associates the P450 genes CYP6Z1, CYP6Z3 and CYP6M7 with pyrethroid resistance in the malaria vector Anopheles funestris. Heredity 109:383392 (2012).
  • 23
    Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJI, et al., Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestris. Proc Natl Acad Sci U S A 110:252257 (2013).
  • 24
    McCaffery AR, Resistance to insecticides in heliothine Lepidoptera: A global view. Philos Trans R Soc London Ser B 353:17351750 (1998).
  • 25
    Achaleke J and Brévault T, Inheritance and stability of pyrethroid resistance in the cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in central Africa. Pest Manag Sci 66:137141 (2010).
  • 26
    Ahmad M, Sayyed AH, Crickmore N and Saleem MA, Inheritance of resistance to deltamethrin in a field population of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Pest Manag Sci 63:10021010 (2007).
  • 27
    Harold JA and Ottea JA, Characterisation of esterases associated with profenofos resistance in the tobacco budworm, Heliothis virescens. Arch Insect Biochem Physiol 45:4759 (2000).
  • 28
    Zheng Y-P, Yang Y-H and Wu Y-D, Metabolic resistance mechanisms in a Phoxim-resistant strain of Helicoverpa armigera. Chin J Pestic Sci 10:410416 (2008).
  • 29
    Xiao P, He J, Liu Y-J, Qiu X-C and Jiao Y-Y, The relationship of resistance to lambda-cyhalothrin with detoxification enzyme activity in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Acta Entomol Sin 52:10971102 (2009).
  • 30
    Campbell BE, The role of esterases in pyrethroid resistance in Australian populations of the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). PhD thesis, Australian National University, Canberra (2001).
  • 31
    Gunning RV, Moores GD and Devonshire AL, Esterase inhibitors synergise the toxicity of pyrethroids in Australian Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pestic Biochem Physiol 63:5062 (1999).
  • 32
    Wu S, Yang Y, Yuan G, Campbell PM, Teese MG, Russell RJ, et al., Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect Biochem Mol Biol 41:1421 (2011).
  • 33
    Gunning RV, Moores GD and Devonshire AL, Esterases and fenvalerate resistance in a field population of Helicoverpa punctigera (Lepidoptera: Noctuidae) in Australia. Pestic Biochem Physiol 58:155162 (1997).
  • 34
    El-Guindy MA, Saleh WS, El-Refai AA and Abou-Donia SA, The role of haemolymph esterases as protectants against intoxication by fenitrothion in the cotton leafworm Spodoptera littoralis (Boisd.). Bull Entomol Soc Egypt Econ Ser 14:177197 (1985).
  • 35
    Cho JR, Kim YJ, Kim JJ, Kim HS, Yoo JK and Lee JO, Electrophoretic pattern of larval esterases in field and laboratory-selected strains of the tobacco cutworm Spodoptera litura (Fabricius). J Asia–Pacific Entomol 2:3944 (1999).
  • 36
    Kim YG, Lee JI, Kang SY and Han SC, Variation in insecticide susceptibilities of the beet armyworm, Spodoptera exigua (Hübner): esterase and acetylcholinesterase activities. Korean J Appl Entomol 36:172178 (1997).
  • 37
    Gunning RV, Moores GD and Devonshire AL, Esterases and esfenvalerate resistance in Australian Helicoverpa armigera (Hübner) Lepidoptera: Noctuidae. Pest Biochem Physiol 54:1223 (1996).
  • 38
    Gunning RV, Nicholson IC, Kemp FC, Borzatta V, Cottage E, Field LM, et al., Piperonyl butoxide restores the efficacy of Bacillus thuringiensis toxin in transgenic cotton against resistant Helicoverpa armigera. Biopest Int 2:129136 (2006).
  • 39
    Young SJ, Gunning RV and Moores GD, The effect of piperonyl butoxide on pyrethroid resistance-associated esterases in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag Sci 61:397401 (2005).
  • 40
    Huang H and Ottea JA, Development of pyrethroid substrates for esterases associated with pyrethroid resistance in the tobacco budworm, Heliothis virescens (F.). J Agric Food Chem 52:65396545 (2004).
  • 41
    Coppin CW, Jackson CJ, Sutherland T, Hart PJ, Devonshire AL, Russell RJ, et al., Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic insecticides. Insect Biochem Mol Biol 42:343352 (2012).
  • 42
    Zhao G, Rose RL, Hodgson E and Roe RM, Biochemical mechanisms and diagnostic microassays for pyrethroid, carbamate and organophosphate insecticide resistance/cross-resistance in the tobacco budworm, Heliothis virescens. Pestic Biochem Physiol 56:183195 (1996).
  • 43
    Huang S and Han Z, Mechanisms for multiple resistances in field populations of common cutworm Spodoptera litura (Fabricius) in China. Pestic Biochem Physiol 87:1422 (2007).
  • 44
    Zhu YC, Guo Z, Chen M-S, Zhu KY, Liu XF and Scheffler B, Major putative pesticide receptors, detoxification enzymes, and transcriptional profile of the midgut of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae). J Invert Pathol 106:296307 (2011).
  • 45
    Teese MG, Campbell PM, Scott C, Gordon KHJ, Southon A, Robin C, et al., Gene identification and proteomic analysis of the esterases of the cotton bollworm, Helicoverpa armigera. Insect Biochem Mol Biol 40:116 (2010).
  • 46
    Pottier M-A, Bozzolan F, Chertemps T, Jacquin-Joly E, Lalouette L, Siaussat D, et al., Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm Spodoptera littoralis. Insect Mol Biol 21:568580 (2012).
  • 47
    Durand N, Chertemps T and Maïbèche-Coisne M, Antennal carboxylesterases in a moth, structural and functional diversity. Commun Integr Biol 5:284286 (2012).
  • 48
    Feyereisen R, Evolution of insect P450. Biochem Soc Trans 34:12521255 (2006).
  • 49
    Yu Q-Y, Lu C, Li W-L, Xiang Z-H and Zhang Z, Annotation and expression of carboxylesterases in the silkworm, Bombyx mori. BMC Genomics 10:553 (2009).
  • 50
    Tsubota T and Shiotsuki T, Genomic analysis of carboxyl/cholinesterase genes in the silkworm Bombyx mori. BMC Genomics 11:377 (2010).
  • 51
    Xiao-Ping W and Hobbs AA, Isolation and sequence analysis of a cDNA clone for a pyrethroid inducible cytochrome P450 from Helicoverpa armigera. Insect Biochem Mol Biol 25:10011009 (1995).
  • 52
    Pittendrigh B, Aronstein K, Zinkovsky E, Andreev O, Campbell B, Daly J, et al., Cytochrome P450 genes from Helicoverpa armigera: expression in a pyrethroid-susceptible and -resistant strain. Insect Biochem Mol Biol 27:507512 (1997).
  • 53
    Ranasinghe C and Hobbs AA, Isolation and characterisation of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera (Hübner): Possible involvement of CYP6B7 in pyrethroid resistance. Insect Biochem Mol Biol 28:571580 (1998).
  • 54
    Yang Y, Chen S, Wu S, Yue Y and Wu Y, Constitutive overexpression of multiple P450 genes associated with pyrethroid resistance in Helicoverpa armigera. J Econ Entomol 99:17841789 (2006).
  • 55
    Wee CW, Lee SF, Robin C and Heckel DG, Identification of candidate genes for fenvalerate resistance in Helicoverpa armigera using cDNA-AFLP. Insect Mol Biol 17: 351360 (2008).
  • 56
    Zhang H, Tang T, Cheng Y, Shui R, Zhang W and Qiu L, Cloning and expression of cytochrome P450 CYP6B7 in fenvalerate-resistant and susceptible Helicoverpa armigera (Hübner) from China. J Appl Entomol 134:754761 (2010).
  • 57
    Brun-Barale A, Héma O, Martin T, Suraporn S, Audant P, Sezutsu H, et al., Multiple P450 genes overexpressed in deltamethrin-resistant strains of Helicoverpa armigera. Pest Manag Sci 66:900909 (2010).
  • 58
    Grubor VD and Heckel DG, Evaluation of the role of CYP6B cytochrome P450s in pyrethroid resistant Australian Helicoverpa armigera. Insect Mol Biol 16:1523 (2007).
  • 59
    Joußen N, Agnolet S, Lorenz S, Schöne SE, Ellinger R, Schneider B, et al., Resistance of Australian Helicoverpa armigera to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proc Natl Acad Sci U S A 109:1520615211 (2012).
  • 60
    Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, et al., Silencing a cotton bollworm P450 monoxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:13071313 (2007).
  • 61
    Cheesman MJ, Traylor MJ, Hilton ME, Richards KE, Taylor MC, Gillam EMJ, et al., Soluble and membrane-bound Drosophila melanogaster CYP6G1 expressed in E. coli: purification, activity and binding properties towards multiple pesticides. Insect Biochem Mol Biol 43:455465 (2013).
  • 62
    Newcomb RD, East PD, Russell RJ and Oakeshott JG, Isolation of α-cluster esterases associated with organophosphate resistance in Lucilia cuprina. Insect Mol Biol 5:211216 (1996).
  • 63
    Rose CJ, Chapman JR, Marshall SDG, Lee SF, Batterham P, Ross HA, et al., Selective sweeps at the organophosphorus resistance locus, Rop-1, have affected variation across and beyond the α-esterase gene cluster in the Australian sheep blowfly, Lucilia cuprina. Mol Biol Evol 28:18351846 (2011).
  • 64
    Marrs T (ed.), Mammalian Toxicology of Insecticides. RSC Publishing, Cambridge, UK (2012).
  • 65
    Gunning RV, Dang HT, Kemp FC, Nicholson IC and Moores GD, New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringinesis Cry1Ac toxin. Appl Environ Microbiol 71:25582563 (2005).
  • 66
    Alvi AHK, Sayyed AH, Naeem M and Ali M, Field evolved resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) to Bacillus thuringiensis toxin Cry1Ac in Pakistan. PloS One 7:e47309 (2012).
  • 67
    Sayyed AH, Moores G, Crickmore N and Wright DJ, Cross-resistance between a Bacillus thuringiensis Cry toxin and non-Bt insecticides in the diamondback moth. Pest Manag Sci 64:813819 (2008).