• 1
    Rondon SI, The potato tuberworm: a literature review of its biology, ecology, and control. Am J Potato Res 87:149166 (2010).
  • 2
    Dikshit AK, Misra SS and Lal L, Persistence of chlorpyrifos residues in potatoes and the effect of processing. Potato Res 28:461468 (1985).
  • 3
    Coll M, Gavish S and Dori I, Population biology of the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae), in two potato cropping systems in Israel. B Entomol Res 90:309315 (2000).
  • 4
    Roelofs WL, Kochansky JP, Cardè RT, Kennedy GG, Henrick CA, Labovitz JN et al., Sex pheromone of the potato tuberworm moth, Phthorimaea operculella. Life Sci 17:699706 (1975).
  • 5
    Persoons CJ, Voerman S, Verwiel PEJ, Ritter FJ, Nooijen WJ and Minsk AK, Sex pheromone of the potato tuberworm moth, Phthorimaea operculella: isolation, identification and field evaluation. Entomol Exp Appl 20:289300 (1976).
  • 6
    Yamaoka R, Fukami H and Ishii S, Isolation and identification of the female sex pheromone of the potato tuberworm moth, Phthorimaea operculella (Zeller) (Lepidoptera, Gelechiidae). Agric Biol Chem Tokyo 40:19711977 (1976).
  • 7
    Raman KV, Control of potato tuber moth Phthorimaea operculella with sex pheromones in Peru. Agric Ecosyst Environ 21:8589 (1988).
  • 8
    Moustafa OK, Belal MH and Girgis NR, Two developed programs for controlling potato tuber moth. Egypt J Agric Res 83:15911599 (2005).
  • 9
    Kroschel J and Zegarra O, Attract-and-kill: a new strategy for the management of the potato tuber moths Phthorimaea operculella (Zeller) and Symmetrischema tangolias (Gyen) in potato. Laboratory experiments towards optimising pheromone and insecticide. Pest Manag Sci 66:490496 (2010).
  • 10
    Fenemore PG, Host-plant location and selection by adult potato moth, Phthorimaea operculella (Lepidoptera: Gelechiidae): a review. J Insect Physiol 3:175177 (1988).
  • 11
    De Cristofaro A, Anfora G, Germinara GS, Cristofaro M and Rotundo G, Olfactory and behavioural responses of Phthorimaea operculella (Zeller) (Lepidoptera, Gelechiidae) adults to volatile compounds of Solanum tuberosum L. Phytophaga 13:5361 (2003).
  • 12
    Arab A, Trigo JR, Lourenção AL, Peixoto AM, Ramos F and Bento JMS, Differential attractiveness of potato tuber volatiles to Phthorimaea operculella (Gelechiidae) and the predator Orius insidiosus (Anthocoridae). J Chem Ecol 33:18451855 (2007).
  • 13
    Meisner J, Ascher KRS and Lavie D, Factors influencing the attraction to oviposition of the potato tuber moth, Gnorimoschema operculella Zell. J Appl Entomol 77:179189 (1974).
  • 14
    Traynier RMM, Field and laboratory experiments on the site of oviposition by the potato tuber moth Phthorimaea operculella (Zell.) (Lepidoptera, Gelechiidae). B Entomol Res 65:391398 (1975).
  • 15
    Das PD, Raina R, Prasad AR and Sen A, Electroantennogram responses of the potato tuber moth, Phthorimaea operculella (Lepidoptera; Gelechiidae), to plant volatiles. J Biosci 32:339349 (2007).
  • 16
    Sharaby AM, Abdel-Rahman HA and Moawad SS, Sensors of the potato tuber moth, Phthorimaea operculella (Zell.) (Lepidoptera: Gelechiidae). B Natl Res Centre Cairo 27:131147 (2002).
  • 17
    Cook BJ, Smith RL and Flint HM, The antennal sense organs of the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae). Proc Entomol Soc Wash 82:117123 (1980).
  • 18
    Hubel DH, Tungsten microelectrode for recording from single units. Science 125:549550 (1957).
  • 19
    De Cristofaro A, Germinara GS, Lalli F and Rotundo G, Unità di ventilazione e trattamento aria per studi comportamentali. Request No. CZ2006A000003, 14.02.2006, Patent No. 0001373059, recorded 19.04.2010 (2006).
  • 20
    Birch MC, Response of both sexes of Trichoplusia ni (Lepidoptera: Noctuidae) to virgin females and to synthetic pheromone. Ecol Entomol 2:99104 (1977).
  • 21
    Palaniswamy P and Seabrook WD, Behavioral responses of the female eastern spruce budworm Choristoneura fumiferana (Lepidoptera: Tortricidae) to the sex pheromone of her own species. J Chem Ecol 4:649655 (1978).
  • 22
    Den Otter CJ, Schuil HA and Sander-van Oosten A, Reception of host-plant odors and female sex pheromone in Adoxophyes orana (Lepidoptera: Tortricidae): electrophysiology and morphology. Entomol Exp Appl 110:110 (1978).
  • 23
    Ljungberg HP, Anderson P and Hansson BS, Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera: Noctuidae). J Insect Physiol 39:253260 (1993).
  • 24
    Malo EA, Castrejòn-Gomez VR, Cruz-Lopez L and Rojas JC, Antennal sensilla and electrophysiological response of male and female Spodoptera frugiperda (Lepidoptera: Noctuidae) to conspecific sex pheromone and plant odors. Ann Entomol Soc Am 97:12731284 (2004).
  • 25
    Schneider D, Schulz S, Priesner E, Ziesmann J and Francke W, Autodetection and chemistry of female and male pheromone in both sexes of the tiger moth Panaxia quadripunctaria. J Comp Physiol A 182:153161 (1998).
  • 26
    Den Otter CJ, De Cristofaro A, Voskamp KE and Rotundo G, Electrophysiological and behavioural responses of chestnut moths, Cydia fagiglandana and C. splendana (Lep., Tortricidae), to sex attractants and odours of host plant. J Appl Entomol 120:413421 (1996).
  • 27
    De Cristofaro A, Ioriatti C, Pasqualini E, Anfora G, Germinara GS, Villa M et al., Electrophysiological responses of Cydia pomonella (L.) to codlemone and pear ester ethyl (E,Z)-2,4-decadienoate: peripheral interactions in their perception and evidences for cells responding to both compounds. B Insectol 57:137144 (2004).
  • 28
    Ansebo L, Ignell R, Löfqvist J and Hansson B, Responses to sex pheromone and plant odours by olfactory receptor neurons housed in sensilla auricillica of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). J Insect Physiol 51:10661074 (2005).
  • 29
    Sanders CJ, Flight and copulation of female spruce budworm in pheromone-treated air. J Chem Ecol 13:17491758 (1987).
  • 30
    Anderson P, Hansson BS and Löfqvist J, Plant-odour-specific receptor neurons on the antennae of female and male Spodoptera littoralis. Physiol Entomol 20:189198 (1995).
  • 31
    Cossé AA, Todd JL and Baker TC, Neurons discovered in male Helicoverpa zea antennae that correlate with pheromone-mediated attraction and interspecific antagonism. J Comp Physiol A 182:585594 (1998).
  • 32
    Larsson MC, Hallberg E, Kozlov MV, Francke W, Hansson BS and Löfsted C, Specialized olfactory receptor neurons mediating intra- and interspecific chemical communication in leafminer moths Eriocrania spp. (Lepidoptera: Eriocraniidae). J Exp Biol 205:989998 (2002).
  • 33
    Lee SG and Baker TC, Incomplete electrical isolation of sex-pheromone responsive olfactory receptor neurons from neighboring sensilla. J Insect Physiol 54:663671 (2008).
  • 34
    Dickens JC, Smith JW and Light DM, Green leaf volatiles enhance sex attractant pheromone of the tobacco budworm, Heliothis virescens (Lep.: Noctuidae). Chemoecology 4:175177 (1993).
  • 35
    Light DM, Flath RA, Buttery RG, Zalom FG, Rice RE, Dickens JC et al., Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecology 4:145152 (1993).
  • 36
    Hayes JL, Strom BL, Roton LM and Ingram LL, Jr, Repellent properties of the host compound 4-allylanisole to the southern pine beetle. J Chem Ecol 20:15951615 (1994).
  • 37
    Ochieng SA, Park KC and Baker TC, Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea. J Comp Physiol A 188:325333 (2002).
  • 38
    Yang Z, Bengtsson M and Witzgall P, Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. J Chem Ecol 30:619629 (2004).
  • 39
    Coracini M, Bengtsson M, Liblikas I and Witzgall P, Attraction of codling moth males to apple volatiles. Entomol Exp Appl 110:110 (2004).
  • 40
    Deng JY, Wei HY, Huang YP and Du JW, Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J Chem Ecol 30:20372045 (2004).
  • 41
    Party V, Hanot C, Said I, Rochat D and Renou M, Plant terpenes affect intensity and temporal parameters of pheromone detection in a moth. Chem Senses 34:763774 (2009).
  • 42
    Schmidt-Büsser D, von Arx M and Guerin PM, Host plant volatiles serve to increase the response of male European grape berry moths, Eupoecilia ambiguella, to their sex pheromone. J Comp Physiol A 195:853864 (2009).
  • 43
    Visser JH, Host odor perception in phytophagous insects. Annu Rev Entomol 31:121144 (1986).
  • 44
    Bruce TJA, Wadhams LJ and Woodcock CM, Insect host location: a volatile situation. Trends Plant Sci 10:269274 (2005).
  • 45
    Anfora G, Tasin M, De Cristofaro A, Ioriatti C and Lucchi A, Synthetic grape volatiles attract mated Lobesia botrana females in laboratory and field bioassays. J Chem Ecol 35:10541062 (2009).
  • 46
    Tasin M, Bäckman A-C, Anfora G, Carlin S, Ioriatti C and Witzgall P, Attraction of female grapevine moth to common and specific olfactory cues from 2 host plants. Chem Senses 35:5764 (2010).
  • 47
    Germinara GS, De Cristofaro A and Rotundo G, Chemical cues for host location by the chestnut gall wasp, Dryocosmus kuriphilus. J Chem Ecol 37:4956 (2011).
  • 48
    Matsui K, Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274280 (2006).
  • 49
    Hammond DG, Rangel S and Kubo I, Volatile aldehydes are promising broad-spectrum post harvest insecticides. J Agric Food Chem 48:44104417 (2000).
  • 50
    Hubert J, Münzbergová Z and Santino A, Plant volatile aldehydes as natural insecticides against stored-product beetles. Pest Manag Sci 64:5764 (2008).
  • 51
    Germinara GS, De Cristofaro A and Rotundo G, Behavioral responses of adult Sitophilus granarius to individual cereal volatiles. J Chem Ecol 34:523529 (2008).
  • 52
    Germinara GS, Conte A, De Cristofaro A, Lecce L, Di Palma A, Rotundo G et al., Electrophysiological and behavioral activity of (E)-2-hexenal in the granary weevil and its application in food packaging. J Food Prot 75:366370 (2012).
  • 53
    Hamilton-Kemp TR, McCracken CT, Jr, Loughrin JH, Andersen RA and Hildebrand DF, Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea. J Chem Ecol 18:10831091 (1992).
  • 54
    Vaughn SF and Gardner HW, Lipoxygenase-derived aldehydes inhibit fungi pathogenic on soybean. J Chem Ecol 19:23372345 (1993).
  • 55
    Deng W, Hamilton-Kemp TR, Nielsen MT, Andersen RA, Collins GB and Hildebrand DF, Effects of six-carbon aldehydes and alcohols on bacterial proliferation. J Agric Food Chem 41:506510 (1993).
  • 56
    James DG, Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 31:481495 (2005).
  • 57
    Yu HL, Zhang YJ, Wu KM, Gao XW and Guo YY, Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. Environ Entomol 37:14101415 (2008).
  • 58
    Cometto-Muñiz JE, Cain WS and Abraham MH, Quantification of chemical vapors in chemosensory research. Chem Senses 28:467477 (2003).
  • 59
    Das GP, Plants used in controlling the potato tuber moth, Phthorimaea operculella (Zeller). Crop Prot 14:631636 (1995).
  • 60
    Raman KV and Booth RH, Integrated control of potato moth in rustic potato stores. Proc 6th Symp Int Soc Trop Root Crops, International Potato Centre, Lima, Peru, pp. 509515 (1984).
  • 61
    Raman KV, Booth RH and Palacios M, Control of potato tuber moth Phthorimaea operculella (Zeller) in rustic potato stores. Trop Sci 27:568569 (1987).
  • 62
    Guerra PC, Molina IY, Yabar E and Gianoli E, Oviposition deterrence of shoots and essential oil of Minthostachys spp. (Lamiaceae) against the potato tuber moth. J Appl Entomol 131:134138 (2007).