Structure-related antifeedant activity of halolactones with a p-menthane system against the lesser mealworm, Alphitobius diaperinus Panzer




Feeding deterrent activity of synthetic halogen lactones against larvae and adults of the lesser mealworm, Alphitobius diaperinus Panzer, in laboratory choice and no-choice tests was studied. The compounds were synthesised from racemic and enantiomerically enriched (ee = 91–98%) cis- and trans-piperitols, which were obtained from (±)-piperitone.


Structure–activity relationship studies identified several synthetic halolactones with a very strong feeding deterrent activity. The most active were the enantiomeric chlorolactones with chiral centre configurations (1S,4S,5R,6R) and (1R,4R,5S,6S) and their racemic mixture. The racemic bromo- and iodolactones obtained from cis-piperitol and saturated lactones with a chiral centre configuration (1R,4S,6R) were also very good antifeedants in comparison with piperitone. Most of the studied compounds were better antifeedants against adults than against larvae—among the 21 compounds, only one bromolactone with a chiral centre configuration (1S,4R,5R,6R) was a weaker deterrent for adults.


Chemical transformation of the piperitone molecule by the introduction of a lactone function and a halogen atom strongly changed its antifeedant properties against the lesser mealworm. Optimum activity is dependent on the presence of a chlorine atom at C-5 of the cyclohexane ring. The activity of bromo- and iodolactones depended strongly on the chiral centre configuration and the halogen substituent. © 2013 Society of Chemical Industry