• 1
    Grote K, Niemann L, Selzsam B, Haider W, Gericke, C, Herzler M et al., Epoxiconazole causes changes in testicular histology and sperm production in the Japanese quail (Coturnix coturnix japonica). Environ Toxicol Chem 27(11):23682374 (2008).
  • 2
    Lin HT, Wong SS and Li GC, Dissipation of epoxiconazole in the paddy field under subtropical conditions of Taiwan. J Environ Sci Hlth 36(4):409420 (2001).
  • 3
    Yoshida Y, Cytochrome P450 of fungi: primary target for azole antifungal agents. Curr Top Med Mycol 2:388418 (1988).
  • 4
    Podust LM, Poulos TL and Waterman MR, Crystal structure of cytochrome P450 14alpha-sterol demethylase (CYP51) from mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci USA 98:30683073 (2001).
  • 5
    Kelly SL, Arnoldi A and Kelly DE, Molecular genetic analysis of azole antifungal mode of action. Biochem Soc Trans 21:10341038 (1993).
  • 6
    Vanden Bossche H, Willemsens G, Cools W, Marichal P and Lauwers W, Hypothesis on the molecular basis of the antifungal activity of N-substituted imidazoles and triazoles. Biochem Soc Trans 11:665667 (1993).
  • 7
    Zarn JA, Brüschweiler BJ and Schlatter JR, Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14-demethylase and aromatase. Environ Hlth Perspect 111:255261 (2003).
  • 8
    Trösken ER, Adamska M, Arand M, Zarn JA, Patten C, Völkel W et al., Comparison of lanosterol-14α-demethylase (CYP51) of human and Candida albicans for inhibition by different antifungal azoles. Toxicology 28:232(2006).
  • 9
    Min ZW, Hong SM, Yang IC, Kwon HY, Kim TK and Kim DH, Analysis of pesticide residues in brown rice using modified QuEChERS multiresidue method combined with electrospray ionization–liquid chromatography–tandem mass spectrometric detection. J Korean Soc Appl Biol Chem 55:769775 (2012).
  • 10
    Hou X, Han M, Dai XH, Yang XF and Yi SG, A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography–tandem mass spectrometry. Food Chem 138:11981205 (2013).
  • 11
    Zhang X, Shen Y, Yu XY and Liu XJ, Dissipation of chlorpyrifos and residue analysis in rice, soil and water under paddy field conditions. Environ Toxicol Chem 78:276280 (2012).
  • 12
    Zrostlíkov HJ, Kovalczuk T, Štěpán R and Poustka J, Determination of seventeen polar/thermolabile pesticides in apples and apricots by liquid chromatography/mass spectrometry. J AOAC Int 86:612622 (2003).
  • 13
    Schermerhorn PG, Golden PE, Krynitsky AJ and Leimkuehler WM, Determination of 22 triazole compounds including parent fungicides and metabolites in apples, peaches, flour, and water by liquid chromatography/tandem mass spectrometry. J AOAC Int 88:14911502 (2005).
  • 14
    Trosken ER, Bittner N and Volkel W, Quantitation of 13 azole fungicides in wine samples by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1083:113119 (2005).
  • 15
    Li YB, Dong FS, Liu XG, Xu J, Li J, Kong ZQ et al., Simultaneous enantioselective determination of triazole fungicides in soil and water by chiral liquid chromatography/tandem mass spectrometry. J Chromatogr A 1224:5160 (2012).
  • 16
    GB 2763-2012 (National Food Safety Standards of China), National food safety standard maximum residue limits for pesticides in food, Standards Press of China, Beijing, China (2012).
  • 17
    EC Regulation No. 396/2005, European pesticide residues and maximum residue levels database, European Commission, Brussels, Belgium (2005).
  • 18
    ICAMA standard operating procedures for pesticide registration residue field trials, Standards Press of China, Beijing, China (2007).
  • 19
    Lehotay SJ, Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J AOAC Int 88:595614 (2005).
  • 20
    Aslam S, Garnier P, Rumpel C, Parent SE and Benoit P, Adsorption and desorption behavior of selected pesticides as influenced by decomposition of maize mulch. Chemosphere 91:14471455 (2013).
  • 21
    Passeport E, Benoit P, Bergheaud E, Coquet Y and Tournebize Y, Epoxiconazole degradation from artificial wetland and forest buffer substrates under flooded conditions. Chem Eng J 173:760765 (2011).
  • 22
    NY/T 788-2004, Guideline on pesticide residue trials, China Agriculture Press, Beijing, China (2004).
  • 23
    Li L, Jiang GJ, Liu CY, Liang HL, Sun DL and Li W, Clothianidin dissipation in tomato and soil, and distribution in tomato peel and flesh. Food Control 25:265269 (2012).
  • 24
    Ma Q, Rahman A, Holland PT, James TK and McNaughton DE, Field dissipation of acetochlor in two New Zealand soils at two application rates. J Environ Qual 33:930938 (2004).
  • 25
    Ramasubramanian T, Persistence and dissipation kinetics of clothianidin in the soil of tropical sugarcane ecosystem. Water Air Soil Pollut 224:14681472 (2013).
  • 26
    Kidd H and James DR, The Agrochemicals Handbook. Royal Society of Chemistry Information Services, Cambridge, UK (1991).
  • 27
    Dhananjay KT, Vipin K, Ravindranath SD and Adarsh S, Dissipation behavior of bifenthrin residues in tea and its brew. Food Control 16:231237 (2005).