• 1
    Carson R, Silent Spring. Houghton Mifflin, Boston, MA (1962).
  • 2
    Public Health Impact of Pesticides Used in Agriculture. World Health Organization, Geneva, Switzerland (1990).
  • 3
    Kogan M, Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243270 (1998).
  • 4
    Ehler LE, Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manag Sci 62:787789 (2006).
  • 5
    Foster SP and Harris MO, Behavioral manipulation methods for insect pest-management. Annu Rev Entomol 42:123146 (1997).
  • 6
    Cardé RT, Principles of mating disruption, in Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants, ed. by Ridgway RL, Silverstein RM and Inscoe MN. CRC Press, Boca Raton, FL, pp. 4771 (1990).
  • 7
    Greenfield MD, Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication. Oxford University Press, New York, NY (2002).
  • 8
    Pickett JA, Wadhams LJ and Woodcock CM, Developing sustainable pest control from chemical ecology. Agric Ecosyst Environ 64(2):149156 (1997).
  • 9
    Turlings TCJ and Ton J, Exploiting scents of distress: the prospect of manipulating herbivore-induced plant odours to enhance the control of agricultural pests. Curr Opin Plant Biol 9:421427 (2006).
  • 10
    Virant-Doberlet M and Čokl A, Vibrational communication in insects. Neotrop Entomol 33(2):121134 (2004).
  • 11
    Dall SRX and Johnstone RA, Managing uncertainty: information and insurance under the risk of starvation. Phil Trans R Soc Lond B 357:15191526 (2002).
  • 12
    Schmidt KA, Dall SRX and Van Gils JA, The ecology of information: an overview on the ecological significance of making informed decisions. Oikos 119:304316 (2010).
  • 13
    Cocroft RB and Rodríguez RL, The behavioral ecology of insect vibrational communication. BioScience 55(4):232334 (2005).
  • 14
    Barth FG, The vibrational sense of spiders, in Comparative Hearing: Insects, ed. by Hoy RR, Popper AN and Fay RR. Springer, New York, NY, pp. 228278 (1998).
  • 15
    Popper AN, Salmon M and Horch KW, Acoustic detection and communication by decapod crustaceans. J Comp Physiol A 187:8389 (2001).
  • 16
    Čokl A and Virant-Doberlet M, Communication with substrate-borne signals in small plant-dwelling insects. Annu Rev Entomol 48:2950 (2003).
  • 17
    Hill PSM, Vibrational Communication in Animals. Harvard University Press, Cambridge, MA (2008).
  • 18
    Pollack G, Who, what, where? Recognition and localization of acoustic signals by insects. Curr Opin Neurobiol 10:763767 (2000).
  • 19
    Dawkins R and Krebs JR, Animal signals: information or manipulation, in Behavioural Ecology: an Evolutionary Approach, ed. by Krebs JR and Davies NB. Blackwell Scientific, Oxford, UK, pp. 282309 (1978).
  • 20
    Virant-Doberlet M, King RA, Polajnar J and Symondson WOC, Molecular diagnostics reveal spiders that exploit prey vibrational signals used in sexual communication. Mol Ecol 20(10):22042216 (2011).
  • 21
    Mazzoni V, Lucchi A, Čokl A, Prešern J and Virant-Doberlet M, Disruption of the reproductive behavior of Scaphoideus titanus by playback of vibrational signals. Entomol Exp Appl 133:174185 (2009).
  • 22
    Virant-Doberlet M, Mazzoni V, de Groot M, Polajnar J and Lucchi A, Vibrational communication networks: eavesdropping and biotic noise, in Studying Vibrational Communication, Vol. 3, ed. by Cocroft RB, Gogala M, Hill PSM and Wessel A. Springer, New York, NY, 454 pp. (2014).
  • 23
    Barth FG, Bleckmann H, Bohnenberger J and Seyfarth E-A, Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae) II. On the vibratory environment of a wandering spider. Oecologia 77:194201 (1988).
  • 24
    Tishechkin DY, Background noises in vibratory communication channels of Homoptera (Cicadinea and Psyllinea). Russ Entomol J 16:3946 (2007).
  • 25
    Tishechkin DY, Vibrational background noise in herbaceous plants and its impact on acoustic communication of small Auchenorrhyncha and Psyllinea (Homoptera). Entomol Rev 93(5):548558 (2013).
  • 26
    McNett GD, Luan LH and Cocroft RB, Wind-induced noise alters signaler and receiver behavior in vibrational communication. Behav Ecol Sociobiol 64:20432051 (2010).
  • 27
    Acheampong S and Mitchell BK, Quiescence in the Colorado potato beetle, Leptinotarsa decemlineata. Entomol Exp Applic 82:8389 (1997).
  • 28
    Brownell PH and Farley RD, Prey-localizing behaviour of the nocturnal desert scorpion, Paruroctonus mesaensis: orientation to substrate vibrations. Anim Behav 27(1):185193 (1979).
  • 29
    Gross P, Insect behavioural and morphological defences against parasitoids. Annu Rev Entomol 38:251273 (1993).
  • 30
    Castellanos I and Barbosa P, Evaluation of predation risk by a caterpillar using substrate-borne vibrations. Anim Behav 72:461469 (2006).
  • 31
    Losey JE and Denno RF, The escape response of pea aphids to foliar-foraging predators: factors affecting dropping behaviour. Ecol Entomol 23(1):5361 (1998).
  • 32
    Losey JE and Denno RF, Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology 79:21432152 (1998).
  • 33
    Dill LM, Fraser AHG and Roitberg BG, The economics of escape behaviour in the pea aphid, Acyrthosiphon pisum. Oecologia 83:473478 (1990).
  • 34
    Friedel T, The vibrational startle response of the desert locust Schistocerca gregaria. J Exp Biol 202:21512159 (1999).
  • 35
    Gilsdorf JM, Hygnstrom SE and VerCauteren KC, Use of frightening devices in wildlife damage management. Integr Pest Manag Rev 7:2945 (2002).
  • 36
    Inta R, Evans TA and Lai JCS, Effect of vibratory soldier alarm signals on the foraging behavior of subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 102(1):121126 (2009).
  • 37
    Kight CR and Swaddle JP, How and why environmental noise impacts animals: an integrative, mechanistic review. Ecol Lett 14(10):10521061 (2011).
  • 38
    Hirashima A, Nagano T and Eto M, Stress-induced changes in the biogenic amine levels and larval growth of Tribolium castaneum Herbst. Biosci Biotech Biochem 57(12):20852089 (1993).
  • 39
    Hirashima A, Takeya R, Taniguchi E and Eto M, Metamorphosis, activity of juvenile-hormone esterase and alteration of ecdysteroid titres: effects of larval density and various stress on the red flour beetle, Tribolium freemani Hinton (Coleoptera: Tenebrionidae). J Insect Physiol 41(5):383388 (1995).
  • 40
    Adamo SA and Baker JL, Conserved features of chronic stress across phyla: the effects of long-term stress on behavior and the concentration of the neurohormone octopamine in the cricket, Gryllus texensis. Horm Behav 60:478483 (2011).
  • 41
    Lee Y, Kim H, Kang T and Jang Y, Stress response to acoustic stimuli in an aphid: a behavioral bioassay model. Entomol Res 42:320329 (2012).
  • 42
    Kirkpatrick RL and Harein PK, Inhibition of reproduction of Indian-meal moths, Plodia interpunctella, by exposure to amplified sound. J Econ Entomol 58(5):920921 (1965).
  • 43
    Kiruba S, Jinham AP, Kumaran JTT, Das SSM and Papadopoulou S, Effectiveness of audible sound waves in reaching larvae of Corcyra cephalonica concealed under flour cover (Lepidoptera: Pyralidae). Entomol Gen 31(4):327336 (2009).
  • 44
    Mullen MA, Infrasound retards development of Tribolium castaneum and Tribolium confusum. J Stored Prod Res 11:111113 (1975).
  • 45
    Jinham AP, Kiruba S, Kumaran JTT and Das SSM, Efficacy of audible sound waves in inflicting tissue damage and mortality in Tribolium castaneum (Coleoptera: Tenebrionidae) larvae. Agric Trop Subtrop 45(1):3236 (2012).
  • 46
    Saxena KN and Kumar H, Interruption of acoustic communication and mating in a leafhopper and a planthopper by aerial sound vibrations picked up by plants. Experientia 36:933936 (1980).
  • 47
    Walker TJ, Acoustic methods of monitoring and manipulating insect pests and their natural enemies, in Pest Management in the Subtropics. Integrated Pest Management – a Florida Perspective, ed. by Rosen D, Bennett FD and Campinera JL. Intercept, Andover, UK, pp. 113123 (1996).
  • 48
    Mankin RW, Hagstrum DW, Smith MT, Roda AL and Kairo MTK, Perspective and promise: a century of insect acoustic detection and monitoring. Am Entomol 57(1):3044 (2011).
  • 49
    Mankin RW, Applications of acoustics in insect pest management. CAB Rev 7(1):17 (2012).
  • 50
    Bomford M and O'Brien P, Sonic deterrents in animal damage control: a review of device tests and effectiveness. Wildl Soc Bull 148:411422 (1990).
  • 51
    Čokl A and Millar JG, Manipulation of insect signaling for monitoring and control of pest insects, in Biorational Control of Arthropod Pests: Application and Resistance Management, ed. by Ishaaya I and Horowitz R. Springer, Dordrecht, The Netherlands, pp. 279316 (2009).
  • 52
    Bertin S, Guglielmino CR, Karam N, Gomulski LM, Malacrida AR and Gasperi G, Diffusion of the nearctic leafhopper Scaphoideus titanus Ball in Europe: a consequence of human trading activity. Genetica 131:275285 (2007).
  • 53
    Claridge MF, Acoustic signals in the Homoptera: behavior, taxonomy, and evolution. Ann Rev Entomol 30:297317 (1985).
  • 54
    Chuche J and Thiery D, Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: a review. Agron Sustain Dev 34(2):381403 (2014).
  • 55
    Mazzoni V, Prešern J, Lucchi A and Virant-Doberlet M, Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull Entomol Res 99:401413 (2009).
  • 56
    Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M and Mazzoni V, Exploitation of insect vibrational signals reveals a new method of pest management. PLoS ONE 7(3):e32954 (2012).
  • 57
    Hofstetter RW, Dunn DD, McGuire R and Potter KA, Using acoustic technology to reduce bark beetle reproduction. Pest Manag Sci 70:2427 (2014).
  • 58
    Hofstetter RW, McGuire R and Dunn DD, Use of acoustics to disrupt and deter wood-infesting insects and other invertebrates from and within trees and wood products. US Patent 2011/63838 (2010); WIPO Patent Application WO/2012/078814 (2012).
  • 59
    Millar JG, McBrien HL, Ho H-Y, Rice RE, Cullen E, Zalom FG, et al, Pentatomid bug pheromones in IPM: possible applications and limitations. IOBC/WPRS Bull 25(9):111 (2002).
  • 60
    Aldrich JR, Hoffmann MP, Kochansky JP, Lusby WR, Eger JE and Payne JA, Identification and attractiveness of a major pheromone component for Nearctic Euschistus spp. stink bugs (Heteroptera: Pentatomidae). Environ Entomol 20:477483 (1991).
  • 61
    Aldrich JR, Khrimian A, Chen X and Camp MJ, Semiochemically based monitoring of the invasion of the brown marmorated stink bug and unexpected attraction of the native green stink bug (Heteroptera: Pentatomidae) in Maryland. Fla Entomol 92(3):483491 (2009).
  • 62
    James DG, Heffer R and Amaike M, Field attraction of Biprorulus bibax Breddin (Hemiptera: Pentatomidae) to synthetic aggregation pheromone and (E)-2-hexenal, a pentatomid defense chemical. J Chem Ecol 22:16971708 (1996).
  • 63
    Mankin RW, Rohde BB, McNeill SA, Paris TM, Zagvazdina NI and Greenfeder S, Diaphorina citri (Hemiptera: Liviidae) responses to microcontroller-buzzer communication signals of potential use in vibration traps. Fla Entomol 96(4):15461555 (2013).
  • 64
    Mazzoni V, Eriksson A, Anfora G, Lucchi A and Virant-Doberlet M, Active space and role of amplitude in plant-borne vibrational communication, in Studying Vibrational Communication, Vol. 3, ed. by Cocroft RB, Gogala M, Hill PSM and Wessel A. Springer, New York, NY, 454 pp. (2014).
  • 65
    Markl H, Vibrational communication, in Neuroethology and Behavioral Physiology, ed. by Huber F and Markl H. Springer, Berlin, Germany, pp. 332353 (1983).
  • 66
    Rohrseitz K and Kilpinen O, Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:8084 (1997).
  • 67
    Hill PSM, How do animals use substrate-borne vibrations as an information source? Naturwissenschaften 96:13551371 (2009).
  • 68
    Michelsen A, Fink F, Gogala M and Traue D, Plants as transmission channels for insect vibrational songs. Behav Ecol Sociobiol 11:269281 (1982).
  • 69
    Telford WM, Geldart LP and Robert ES, Applied Geophysics. Cambridge University Press, Cambridge, UK, p. 149 (1990).
  • 70
    Aicher B and Tautz J, Vibrational communication in the fiddler crab, Uca pugilator I. Signal transmission through the substratum. J Comp Physiol A 166:354353 (1990).
  • 71
    Brownell PH, Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197(4302):479482 (1977).
  • 72
    Brownell PH and van Hemmen JL, Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Am Zool 41(5):12291240 (2001).
  • 73
    Devetak D, Detection of substrate vibrations in the antlion larva, Myrmeleon formicarius (Neuroptera: Myrmeleonidae). Biološki Vestnik 33:1122 (1985).
  • 74
    Woods RD and Jedele LP, Energy – attenuation from construction vibrations, in Vibration Problems in Geotechnical Engineering, ed. by Gazetas G and Selig ET. American Society of Civil Engineers, New York, NY, pp. 229246 (1985).
  • 75
    Athanasopoulos GA, Pelekis PC and Anagnostopoulos GA, Effect of soil stiffness in the attenuation of Rayleigh-wave motions from field measurements. Soil Dyn Earthq Eng 19(4):277288 (2000).
  • 76
    Čokl A, Zorović M, Millar JG, Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav Proc 75:4054 (2007).
  • 77
    Polajnar J, Svenšek D and Čokl A, Resonance in herbaceous plant stems as a factor in vibrational communication of pentatomid bugs (Heteroptera: Pentatomidae). J R Soc Interface 9:18981907 (2012).
  • 78
    Polajnar J, Kavčič A, Žunič Kosi A and Čokl A, Palomena prasina (Hemiptera: Pentatomidae) vibratory signals and their tuning with plant substrates. Centr Eur J Biol 8(7):670680 (2013).
  • 79
    McNett GD and Cocroft R, Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav Ecol 19:650656 (2008).
  • 80
    McNett GD, Miles RN, Homentcovschi D and Cocroft RB, A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems. J Comp Physiol A 192:12451251 (2006).
  • 81
    Stölting H, Moore TE and Lakes-Harlan R, Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa. J Insect Sci 2:2 (2002).
  • 82
    Chiu YK, Mankin RW and Lin CC, Context-dependent stridulatory responses of Leptogenys kitteli (Hymenoptera: Formicidae) to social, prey, and disturbance stimuli. Ann Ent Soc Am 104:10121020 (2011).
  • 83
    Stritih N, Virant-Doberlet M and Čokl A, Green stink bug Nezara viridula detects differences in amplitude between courtship song vibrations at stem and petiolus. Eur J Physiol 439(Suppl.):R190R192 (2000).
  • 84
    Zgonik V and Čokl A, The role of signals of different modalities in initiating vibratory communication in Nezara viridula. Centr Eur J Biol 9(2):200211 (2014).
  • 85
    Cocroft RB, Tieu TD, Hoy RR and Miles RN, Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis). J Comp Physiol A 186:695705 (2000).
  • 86
    Casas J, Magal C and Sueur J, Dispersive and non-dispersive waves through plants: implications for arthropod vibratory communication. Proc R Soc B 274(1613):10871092 (2007).
  • 87
    Jaffe MJ and Forbes S, Thigmomorphogenesis: the effect of mechanical perturbation on plants. Plant Growth Regul 12:313324 (1993).
  • 88
    Coutand C, Mechanosensing and thigmomorphogenesis, a physiological and biomechanical point of view. Plant Sci 179:168182 (2010).
  • 89
    Suge H, Dehydration and drought resistance in Phaseolus vulgaris as affected by mechanical stress. Rep Inst Agric Res 31:110 (1980).
  • 90
    Uchida A and Yamamoto KT, Effects of mechanical vibration on seed germination of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol 43(6):647651 (2002).
  • 91
    Johnson KA, Sistrunk ML, Polisensky DH and Braam J, Arabidopsis thaliana responses to mechanical stimulation do not require ETR1 or EIN2. Plant Physiol 116:643649 (1998).
  • 92
    Takahashi H, Suge H and Kato T, Growth promotion by vibration at 50 Hz in rice and cucumber seedlings. Plant Cell Physiol 32(5):729732 (1991).
  • 93
    Niklas KJ, Effects of vibration on mechanical properties and biomass allocation pattern of Capsella bursa-pastoris (Cruciferae). Ann Bot 82(2):147156 (1998).
  • 94
    Tianzhen H, Baoming L, Guanghui T, Qing Z, Yingping X and Lirong Q, Application of acoustic frequency technology to protected vegetable production (in Chinese). Trans Chin Soc Agric Eng 25(2):156159 (2009).
  • 95
    Lirong Q, Guanghui T, Tianzhen H, Baoying Z and Xiaona L, Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse, in Computer and Computing Technologies in Agriculture III, ed. by Li D and Zhao C. Springer, Berlin, Germany, pp. 449454 (2010).
  • 96
    Cheney BE, Destito JS and Hou TZ, Plant treatment process and apparatus. US Patent PCT/US/1997/007244 (1995); WIPO Patent WO/1998/049283 (1995).
  • 97
    Destito JS and Hou TZ, Plant treatment process. US Patent 08/394,020 (1995); WIPO Patent WO/1996/025849 (1995).
  • 98
    Little HF, Reactions of the honey bee, Apis mellifera L., to artificial sounds and vibrations of known frequencies. Ann Entomol Soc Am 55(1):8289 (1962).
  • 99
    Sunderland KD and Samu F, Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Applic 95(1):113 (2000).
  • 100
    Landis DA, Menalled FD, Costamagna AC and Wilkinson TK, Manipulating plant resources to enhance beneficial arthropods in agricultural landscapes. Weed Sci 53(6):902908 (2005).
  • 101
    Lohrey AK, Clark DL, Gordon SD and Uetz GW, Antipredator responses of wolf spiders (Araneae: Lycosidae) to sensory cues representing an avian predator. Anim Behav 77:813821 (2009).
  • 102
    Wu C-H and Elias DO, Vibratory noise in anthropogenic habitats and its effect on prey detection in a web-building spider. Anim Behav 90:4756 (2014).
  • 103
    Meyhöfer R and Casas J, Vibratory stimuli in host location by parasitic wasps. J Insect Physiol 45:967971 (1999).
  • 104
    Laumann RA, Blassioli-Moraes CM, Čokl A and Borges M, Eavesdropping on sexual vibratory signals of stink bugs (Hemiptera: Pentatomidae) by the egg parasitoid Telenomus podisi. Anim Behav 73:637649 (2007).