Optimization of oxidative folding methods for cysteine-rich peptides: a study of conotoxins containing three disulfide bridges

Authors


Abstract

The oxidative folding of small, cysteine-rich peptides to selectively achieve the native disulfide bond connectivities is critical for discovery and structure-function studies of many bioactive peptides. As the propensity to acquire the native conformation greatly depends on the peptide sequence, numerous empirical oxidation methods are employed. The context-dependent optimization of these methods has thus far precluded a generalized oxidative folding protocol, in particular for peptides containing more than two disulfides. Herein, we compare the efficacy of optimized solution-phase and polymer-supported oxidation methods using three disulfide-bridged conotoxins, namely µ-SIIIA, µ-KIIIA and ω-GVIA. The use of diselenide bridges as proxies for disulfide bridges is also evaluated. We propose the ClearOx-assisted oxidation of selenopeptides as a fairly generalized oxidative folding protocol. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.

Ancillary