Giant enhancement of material damage associated to electronic excitation during ion irradiation: The case of LiNbO3

Authors

  • A. Rivera,

    1. Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
    2. Instituto de Microelectrónica de Madrid (CNM), CSIC, 28760 Tres Cantos, Spain
    Search for more papers by this author
  • J. Olivares,

    1. Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
    2. Instituto de Óptica, CSIC, Serrano 121, 28006 Madrid, Spain
    Search for more papers by this author
  • G. García,

    1. Laboratory of Synchrotron Light (CELLS), 08193 Bellaterra, Spain
    Search for more papers by this author
  • J. M. Cabrera,

    1. Departamento de Física de Materiales, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
    Search for more papers by this author
  • F. Agulló-Rueda,

    1. Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049 Madrid, Spain
    Search for more papers by this author
  • F. Agulló-López

    Corresponding author
    1. Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
    2. Departamento de Física de Materiales, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
    • Phone: +34 91 497 36 35, Fax: +34 91 497 8579
    Search for more papers by this author

Abstract

The structural damage induced by ion irradiation on dielectric materials and associated device degradation has been, so far, explained on the basis of collisional processes mostly ignoring the electronic excitation. Recent work, focused on lithium niobate, offers conclusive evidence that at high ion energy and moderate mass (A ≥ 15) electronic excitation may induce a giant enhancement over the damage rate due to nuclear collisions. As a consequence the material becomes amorphized at irradiation fluences far below those required for nuclear collisions alone. These results are expected to have a deep impact on many technologies including storage of radioactive waste, radiation-resistant materials for fusion reactors, lifetime of components and devices in space missions, nano-patterning in electronics and photonics, and possibly heavy-ion therapy in medicine. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Ancillary