Tunable electroluminescence from low-threshold voltage LED structure based on electrodeposited Zn1−xCdxO-nanorods/p-GaN heterojunction

Authors

  • Th. Pauporté,

    Corresponding author
    1. Laboratoire d'Electrochimie, Chimie des Interfaces et Modélisation pour l'Energie (LECIME), UMR 7575 CNRS, Chimie ParisTech, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France
    • Phone: (33)1 55 42 63 83, Fax: (33)1 44 27 67 50
    Search for more papers by this author
  • O. Lupan,

    1. Laboratoire d'Electrochimie, Chimie des Interfaces et Modélisation pour l'Energie (LECIME), UMR 7575 CNRS, Chimie ParisTech, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France
    2. Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Blvd., FCIM, 2004 Chisinau, Republic of Moldova
    Search for more papers by this author
  • B. Viana

    1. Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574-CNRS-Chimie ParisTech-UPMC, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France
    Search for more papers by this author

Abstract

Violet light-emitting diode (LED) structures based on Cd-alloyed zinc oxide (Zn1−xCdxO) nanorods (NRs)/p-GaN heterojunction have been fabricated by epitaxial electrodeposition at low temperatures in an aqueous soft bath followed by a mild thermal annealing. The ultraviolet (UV) room-temperature emission peak at around 397 nm with a full width at half-maximum (FWHM) of 10 nm observed from pure ZnO-NRs/p-GaN at room temperature was shifted to 417 nm with FWHM of 14 nm by employing a Zn0.92Cd0.08O-NRs/p-GaN heterojunction. The emission threshold voltage was low at about 5.0 V and the electroluminescence (EL) intensity rapidly increased with the applied forward-bias voltage. The emission wavelength increased with the Cd content in the alloy. The EL physics mechanism in LED structures of the heterojunctions is discussed.

Ancillary