Get access

Transparent conductive Ga-doped ZnO films fabricated by MOCVD

Authors


Abstract

Transparent conductive oxides (TCOs) are used for a variety of different applications, e.g., in solar cells and light emitting diodes (LEDs). Mostly, sputtering is used, which often results in a degradation of the underlying semiconductor material. In this work we report on a “soft” method for the fabrication of ZnO films as TCO layers by using metal organic chemical vapor deposition (MOCVD) at particularly low temperatures. The MOCVD approach has been studied focusing on the TCO key issues: fabrication temperature, morphology, optical, and electrical properties. Very smooth ZnO films with rms values down to 0.8 nm were fabricated at a substrate temperature of only 300 °C. Ga-doping is well controllable even for high carrier concentrations up to 2 × 1020 cm−3, which is above the Mott-density leading to metallic-like behavior of the films. Furthermore all films show excellent optical transparency in the visible spectral range. As a consequence, our MOCVD approach is well suited for the soft fabrication of ZnO-based TCO layers.

Get access to the full text of this article

Ancillary