SEARCH

SEARCH BY CITATION

  • 1
    D. M. Rowe (ed.), CRC Handbook of Thermoelectrics ( CRC Press Inc., Boca Raton, 1995), p. 19.
  • 2
    G. S. Nolas, J. Sharp, and J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments ( Springer, Berlin, Heidelberg, 2001), p. 177.
  • 3
    B. Bhushan (ed.), Springer Handbook of Nanotechnology ( Springer, Berlin, Heidelberg, 2006), p. 349.
  • 4
    G. S. Nolas, D. T. Morelli, and T. M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999).
  • 5
    J. Dadda, E. Müller, S. Perlt, T. Höche, P. Bauer Pereira, and R. P. Hermann, J. Mater. Res. 26, 1800 (2011).
  • 6
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. Ó'Quinn, Nature 413, 597 (2001).
  • 7
    K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Science 303, 818 (2004).
  • 8
    G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
  • 9
    C. C. Williams and H. K. Wickramasinghe, Appl. Phys. Lett. 49, 1587 (1986).
  • 10
    C. C. Williams and H. K. Wickramasinghe, Nature 344, 317 (1990).
  • 11
    M. Nonnenmacher and H. K. Wickramasinghe, Appl. Phys. Lett. 61, 168 (1992).
  • 12
    W. Müller-Hirsch, Wärmeübertrag in der Ultra-Hochvakuum-Rasterwärmemikroskopie, Dissertation, University Oldenburg, 2000, p. 97.
  • 13
    F. Forster and E. Gmelin, Rev. Sci. Instrum. 67, 12 (1996).
  • 14
    J. Xu, B. Koslowski, R. Möller, K. Läuger, K. Dransfeld, and I. H. Wilson, J. Vac. Sci. Technol. B 12, 3 (1994).
  • 15
    M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1969).
  • 16
    J. A. Støvneng and P. Lipavský, Phys. Rev. B 42, 9214 (1990).
  • 17
    A. Rettenberger, C. Baur, K. Läuger, D. Hoffmann, J. Y. Grand, and R. Möller, Appl. Phys. Lett. 67, 9 (1995).
  • 18
    A. Majumdar, in: Proceedings 19th ICT, Cardiff, Wales, 2000, p. 221.
  • 19
    H. Lyeo, A. A. Khajetoorians, L. Shi, K. P. Pipe, R. J. Ram, A. Shakouri, and C. K. Shih, Science 303, 816 (2004).
  • 20
    Z. Bian, A. Shakouri, L. Shi, H. Lyeo, and C. K. Shih, Appl. Phys. Lett. 87, 053115 (2005).
  • 21
    H. Süßmann, A. Priemuth, and S. Langhammer, in: Proc. Transport in Verbindungshalbleitern, Olbersdorf/Zittau (GDR) 1981, ‘Methoden zum Nachweis und zur Bestimmung von Mikroinhomogenitäten im System (Bi1-xSbx)2Te3 ( Kurt Stecker, Halle/Saale, 1981), p. 149.
  • 22
    Th. Dietrich, in: Proc. 14th ICT, St. Petersburg, Russia, 1995, p. 13.
  • 23
    P. Reinshaus, in: Proc. 12th ICT, Yokohama, Japan, 1993, p. 86.
  • 24
    S. Iwanaga and G. J. Snyder, J. Electron. Mater. 41, 1667 (2012).
  • 25
    F.S. Ohuchi, in: Proc. MRS, Vol. 804, Boston, USA, 2003.
  • 26
    T. Ohta, in: Proc. 13th FGM, Beijing, China, 2002, p. 7
  • 27
    O. J. Gregory and M. Amani, J. Electrochem. Soc. 158, J15 (2011).
  • 28
    H. Lee, S. Hyun, H. Park, and S. Han, Microelectron. Eng. 88, 593596 (2011).
  • 29
    S.-H. Wang, H.-M. Cheng, R.-J. Wu, and W.-H. Chao, Thin Solid Films 518, 5901 (2010).
  • 30
    M. Otani, E. L. Thomas, W. Wong-Ng, P.-K. Schenck, K.-S. Chang, N. D. Lowhorn, M. L. Green, and H. Ohguchi, Jpn. J. Appl. Phys. 48, 05EB02 (2009).
  • 31
    M. Watanabe, T. Kita, T. Fukumura, A. Ohtomo, K. Ueno, and M. Kawasaki, Appl. Surf. Sci. 254, 777 (2007).
  • 32
    A. Yamamoto, T. Noguchi, H. Obara, K. Ueno, S. Ikeuchi, T. Sugawara, K. Shimada, Y. Takasaki, and Y. Ishii, Mater. Res. Soc. Symp. Proc. 1024, A01 (2008).
  • 33
    J. Dadda, E. Müller, S. Perlt, S. T. Höche, P. Bauer Periera, and R. Hermann, J. Mater. Res. 26, 1800 (2011).
  • 34
    L. J. Balk, R. Heiderhoff, J. C. H. Phang, and C. Thomas, Appl. Phys. A 87, 442 (2007).
  • 35
    A. Altes, R. Heiderhoff, and L. J. Balk, J. Phys. D: Appl. Phys. 37, 952 (2004).
  • 36
    V. Cherepanov, E. Zubkov, H. Junker, S. Korte, M. Blab, P. Coenen, and B. Voigtländer, Atomic Scale Interconnection Machines, in: Advances in Atom and Single Molecule Machines, edited by C. Joachim ( Springer-Verlag, Berlin Heidelberg, 2012), pp. 921.
  • 37
    G. Meijer and A. van Herwaarden, Thermal Sensors, Sensors Series ( Institute of Physics, Bristol, 1994).
  • 38
    W. Göpel, J. Hesse, and J. Zemel, Thermal Sensors, in: Sensors, Vol. 4 ( VCH, Weinheim, 1990).
  • 39
    K. Itaka, H. Minami, H. Kawaji, Q. Wang, J. Nishii, M. Kawasaki, and H. Koinuma, J. Therm. Anal. Cal. 69, 1051 (2002).
  • 40
    O. Nakabeppu, M. Igeta, and K. Hijikata, Microscale Thermophys. Eng. 1, 201 (1997).
  • 41
    D. Platzek, G. Karpinski, C. Drasar, and E. Müller, Mater. Sci. Forum 492–493, 587 (2005).
  • 42
    S. Iwanaga, E. S. Toberer, A. LaLonde, and G. J. Snyder, Rev. Sci. Instrum. 82, 063905 (2011).
  • 43
    J. Bass, J. S. Dugdale, C. L. Foiles, and A. Meyers, in: Metal: Electronic Transport Phenomena: Electrical Resistivity, Thermoelectrical Power and Optical Properties, edited by K. H. Hellwege and J. L. Olsen, Springer Materials – The Landolt-Börnstein, New Series III/15b ( Springer-Verlag, Berlin, Heidelberg, 1985).
  • 44
    R. E. Bentley, Handbook of Temperature Measurement: Theory and Practice of Thermoelectric Thermometry, Vol. 3 ( Springer-Verlag, Singapore, 1998), chap. 1.
  • 45
    P. Kendall, in: Proc. Phys. Soc. 72, 898; DOI: 10.1088/0370-1328/72/5/429.
  • 46
    J.R. Kennedy, in: Proc. ASME, Vancouver Canada, 2010, pp. 403408.
  • 47
    NIST ITS-90 Thermocouple Database, Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated Thermocouple Types Based on the ITS-90, Nat. Inst. Stand. Technol. Monogr. 175, 630 (1993).
  • 48
    M. Gotoh and H. Oikawa, in: 18th IMEKO Metrology for a Sustainable Development, Rio de Janeiro, Brazil, 2006.
  • 49
    A. Schuck, Untersuchungen zum Auflösungsvermögen der Thermospannungssonde in Abhängigkeit von den Sonden- und Probeneigenschaften, Diploma Thesis, University Halle-Wittenberg (1995), p. 20.
  • 50
    C.M. Bhandari, Thermoelectric Transport Theory, in: CRC Handbook of Thermoelectrics, edited by D. M. Rowe ( CRC Press Inc., Boca Raton, 1995), pp. 2742.
  • 51
    A. F. May and G. J. Snyder, Introduction to Modeling Thermoelectric Transport at High Temperatures, in: Thermoelectrics and its Energy Harvesting – Materials, Preparation, and Characterisation in Thermoelectrics, edited by D. M. Rowe ( CRC Press, Boca Raton, 2012), pp. 11-111-18.
  • 52
    A. Becker, G. Schierning, R. Theissmann, M. Meseth, N. Benson, R. Schmechel, D. Schwesig, N. Petermann, H. Wiggers, and P. Ziolkowski, J. Appl. Phys. 111, 54320 (2012).
  • 53
    P. Ziolkowski, G. Karpinski, D. Platzek, C. Stiewe, and E. Müller, in: Proc. 25th ICT, Vienna, Austria, 2006, pp. 684688.
  • 54
    A. Majumdar, Annu. Rev. Mater. Sci. 29, 505 (1999).
  • 55
    N. D. Lowhorn, W. Wong-Ng, Z. Q. Lu, E. Thomas, M. Otani, M. Green, N. Dilley, J. Sharp, and T. N. Tran, Appl. Phys. A 96, 511 (2009).
  • 56
    P. Ziolkowski, P. Blaschkewitz, C. Stiewe, G. Karpinski, and E. Müller, in: Proc. 9th ECT, Thessaloniki, Greece, 2011, pp. 365368.
  • 57
    T. E. Svechnikova, P. P. Konstantinov, M. K. Zhitinskaya, S. A. Nemov, D. Platzek, and E. Müller, in: Proc. 7th European Workshop on Thermoelectrics, Pamplona, Spain, 2002.
  • 58
    C. Y. Ho, R. W. Powell, and P. E. Liley, J. Phys. Chem. Ref. Data 1, 279 (1972).
  • 59
    T. M. Hansen, K. Stokbro, O. Hansen, T. Hassenkam, I. Shiraki, S. Hasegawa, and P. Bøgglid, Rev. Sci. Instrum. 74, 3701 (2003).
  • 60
    K. H. Wu, C. I. Hung, P. Ziolkowski, D. Platzek, G. Karpinski, C. Stiewe, and E. Müller, Rev. Sci. Instrum. 80, 105104 (2009).
  • 61
    G. B. Bokii and R. F. Klevtsova, Zh. Strukt. Khimii 6, 866 (1965).
  • 62
    T. Dasgupta, C. Stiewe, L. Boettcher, H. Yin, B. B. Iversen, and E. Müller, Proc. Mater. Res. Soc. Symp. 1325, 137142 (2011).
  • 63
    T. Dasgupta, C. Stiewe, L. Boettcher, and R. Hassdorf, J. Mater. Res. 26, 1925 (2011).
  • 64
    d. J. Boor, C. Stiewe, P. Ziolkowski, T. Dasgupta, G. Karpinski, E. Lenz, F. Edler, and E. Müller, High temperature measurement of the Seebeck coefficient and the electrical conductivity, presented at 31st ICT, Aalborg, Denmark, 2012, submitted to JEM.
  • 65
    N. Chen, F. Gascoin, and G. J. Snyder, Appl. Phys. Lett. 87, 171903 (2005).
  • 66
    D. Platzek, G. Karpinski, C. Drasar, and E. Müller, Mater. Sci. Forum 492–493, 587592 (2005).
  • 67
    L. I. Anatychuk and L. N. Vikhor, Functionally Graded Materials, in: Monograph of Theromelectricity, Vol. 4 ( Bukrek Publishers, Chernivtsi, Ukraine, 2012).
  • 68
    E. Müller, K. Zabrocki, C. Goupil, G. J. Snyder, and W. Seifert, Functionally Graded Thermoelectric Generator and Cooler Elements, in: Thermoelectrics and its Energy Harvesting – Materials, Preparation, and Characterisation in Thermoelectrics, edited by D. M. Rowe ( CRC Press, Boca Raton, 2012), pp. 4-14-36.
  • 69
    E. Müller, C. Drasar, J. Schilz, and W. A. Kaysser, Mater. Sci. Eng. 362, 1739 (2003).
  • 70
    J. Schliz, E. Müller, L. Helmers, Y. S. Kang, Y. Noda, and M. Niino, Mater. Sci. Forum 308–311, 647652 (1999).
  • 71
    J. Schliz, L. Helmers, E. Müller, and M. Niino, J. Appl. Phys. 83, 11501152 (1998).
  • 72
    L. Helmers, E. Müller, J. Schilz, and W. A. Kaysser, Mater. Sci. Eng. B 56, 6068 (1998).
  • 73
    D. Platzek, G. Karpinski, C. Stiewe, P. Ziolkowski, C. Drasar, and E. Müller, in: Proc. 24th ICT, Clemson, USA, 2005, pp. 1316.