Heterogeneous integration of hexagonal boron nitride on bilayer quasi-free-standing epitaxial graphene and its impact on electrical transport properties (Phys. Status Solidi A 6/2013)

Authors

  • Matthew J. Hollander,

    Corresponding author
    • Department of Electrical Engineering, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, USA
    Search for more papers by this author
  • Ashish Agrawal,

    1. Department of Electrical Engineering, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, USA
    Search for more papers by this author
  • Michael S. Bresnehan,

    1. Department of Materials Science and Engineering, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, USA
    Search for more papers by this author
  • Michael LaBella,

    1. Penn State Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, USA
    Search for more papers by this author
  • Kathleen A. Trumbull,

    1. Penn State Materials Research Institute, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, USA
    Search for more papers by this author
  • Randal Cavalero,

    1. The Penn State Electro-Optics Center, The Pennsylvania State University, 230 Innovation Blvd., University Park, Pennsylvania 16802, USA
    Search for more papers by this author
  • David W. Snyder,

    1. The Penn State Electro-Optics Center, The Pennsylvania State University, 230 Innovation Blvd., University Park, Pennsylvania 16802, USA
    Search for more papers by this author
  • Suman Datta,

    1. Department of Electrical Engineering, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, USA
    Search for more papers by this author
  • Joshua A. Robinson

    1. Department of Materials Science and Engineering, The Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, USA
    Search for more papers by this author

Corresponding author: e-mail mjh423@psu.edu, Phone: 814-689-9483

e-mail jrobinson@psu.edu

Abstract

image

In recent years, hexagonal boron nitride (h-BN) has gained interest as a material for use in graphene electronics due to its unique properties and the possibility for enhanced carrier transport compared to conventional dielectric materials on graphene. In this issue, researchers at the Pennsylvania State University have studied the integration of h-BN with epitaxial graphene on SiC for the first time, showing improved transport by 2x. They utilize temperature and carrier density dependent scattering models in order to understand the source of this enhanced transport and to show the unique challenges for graphene on SiC due to the presence of step-edges. Read more on pages 1062–1070. The front cover graphics show a height map of a graphene Hall cross, displaying the presence of step-edges in the substrate (center) over top of a Raman map showing the 2D peak full width half max and indicating the presence of bilayer and multi-layer graphene (background).

Ancillary