Metal–oxide–diamond interface investigation by TEM: Toward MOS and Schottky power device behavior

Authors


Abstract

Metal and oxide distribution in diamond metal–oxide–semiconductor (MOS) structures are characterized using several transmission electron microscopy (TEM) modes at nanometric scale. To understand their electrical behavior, oxygen distribution using electron energy loss spectroscopy (EELS) through the layer structure, high-resolution electron microscopy (HREM), and annular dark field (ADF) observations are reported. Oxide thickness variations, as well as oxygen content variations have been identified and characterized at an atomic resolution. The latter allows to understand the related electrical behavior as, for example, leakages or shortcuts.

Ancillary