Get access

Transition between high-spin and low-spin states in Mn-doped MgO

Authors

  • S. Meskine,

    Corresponding author
    1. Aix-Marseille Université, IM2NP-CNRS UMR 7334, Campus St. Jérôme, Marseille Cedex 20, France
    2. Laboratoire d'Elaboration et Caractérisation Physico Mécanique et Métallurgique des Matériaux (ECP3M), Département de Génie Electrique, Faculté des Sciences et de la Technologie, Université Abdelhamid Ibn Badis de Mostaganem, Mostaganem, Algeria
    Search for more papers by this author
  • A. Boukortt,

    1. Aix-Marseille Université, IM2NP-CNRS UMR 7334, Campus St. Jérôme, Marseille Cedex 20, France
    2. Laboratoire d'Elaboration et Caractérisation Physico Mécanique et Métallurgique des Matériaux (ECP3M), Département de Génie Electrique, Faculté des Sciences et de la Technologie, Université Abdelhamid Ibn Badis de Mostaganem, Mostaganem, Algeria
    Search for more papers by this author
  • R. Hayn,

    1. Aix-Marseille Université, IM2NP-CNRS UMR 7334, Campus St. Jérôme, Marseille Cedex 20, France
    Search for more papers by this author
  • A. Zaoui

    1. Modelling and Simulation in Materials Science Laboratory, Physics Department, University of Sidi Bel-Abbes, Algeria
    Search for more papers by this author

Abstract

Using first-principle band structure methods, we investigate the electronic and magnetic properties of Mn-doped MgO in rock salt structure. Two approaches have been compared: the local spin-density approximation (LSDA) and the LSDA + U with a Hubbard-like Coulomb term. In both approximations, by reducing the lattice parameter, a transition from the high-spin (inline image) to a low-spin (inline image) state has been found. The high-spin state is insulating, whereas the low-spin state corresponds to a half-metallic ferromagnet if the Jahn–Teller effect can be avoided.

Get access to the full text of this article

Ancillary