- 1
G. Dresselhaus, Phys. Rev. 100, 580 (1955). - 2
M. I. D'yakonov and V. Yu. Kachorovskii, Fiz. Tekh. Poluprovodn. 20, 178 (1986) [Sov. Phys. Semicond. 20, 110 (1986)].

- 3
E. I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)].

- 4
Y. A. Bychkov and E. I. Rashba, Pis'ma Zh. Èksp. Teor. Fiz. 39, 66 (1984) [JETP Lett. 39, 78 (1984)].

- 5
O. Krebs and P. Voisin, Phys. Rev. Lett. 77, 1829 (1997). - 6
O. Krebs, W. Seidl, J. P. Andre, D. Bertho, C. Jonani, and P. Voisin, Semicond. Sci. Technol. 12, 938 (1997). - 7
L. Vervoort and P. Voisin, Phys. Rev. B 56, 12744 (1997). - 8
I. Zutic, J. Fabian, and S. Das-Sarma, Rev. Mod. Phys. 76, 323 (2004). - 9
R. Winkler, Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems(Springer, Berlin, 2003).

- 10
S. Maekawa, Concepts in Spin Electronics(Oxford University Press, Oxford, 2006).

- 11
J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Acta Phys. Slov. 57, 565 (2007).

- 12
M. I. Dyakonov (ed.), Spin Physics in Semiconductors (Springer, Berlin, 2008).

- 13
T. Dietl, D. D. Awschalom, and M. Kaminska (eds.), Spintronics(Semiconductors and Semimetals) (Academic Press, Inc., London, 2008).

- 14
D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, and M. L. Roukes (eds.), Spin Electronics(Kluwer Acad. Publ., Dordrecht, 2009).

- 15
D. D. Awschalom, D. Loss, and N. Samarth (eds.), Semiconductor Spintronics and Quantum Computation(Springer, Berlin, 2010).

- 16
M. W. Wu, J. H. Jiang, and M. Q. Weng, Phys. Rep. 493, 61 (2010). - 17
E. Y. Tsymbal and I. Zutic (eds.), Handbook of Spin Transport and Magnetism(Chapman and Hall, London, 2011).

- 18
J. Xia, W. Ge, and K. Chang, Semiconductor Spintronics(World Scientific, Singapore, 2012).

- 19
S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura (eds.), Spin Current(Oxford University Press, Oxford, 2012).

- 20
M. I. D'yakonov and V. I. Perel’, Sov. Phys. Solid State 13, 3023 (1972).

- 21
N. S. Averkiev and L. E. Golub, Phys. Rev. B 60, 15582 (1999). - 22
N. S. Averkiev, L. E. Golub, and M. Willander, J. Phys.: Condens. Matter 14, R271 (2002). - 23
N. S. Averkiev and L. E. Golub, Semicond. Sci. Technol. 23, 114002 (2008). - 24
J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90, 146801 (2003). - 25
B. A. Bernevig, B. A. Orenstein, and S.-C. Zhang, Phys. Rev. Lett. 97, 236601 (2006). - 26
J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S.-C. Zhang, S. Mack, and D. D. Awschalom, Nature 458, 610 (2009). - 27
M. P. Walser, C. Reichl, W. Wegscheider, and G. Salis, Nature Phys. 8, 757 (2012). - 28
S. D. Ganichev and W. Prettl, J. Phys.: Condens. Matter 15, R935 (2003). - 29
Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno, Phys. Rev. Lett. 83, 4196 (1999). - 30
O. Z. Karimov, G. H. John, R.T. Harley, W. H. Lau, M. E. Flatte, M. Henini, and R. Airey, Phys. Rev. Lett. 91, 246601 (2003). - 31
S. Döhrmann D. Hägele, J. Rudolph, M. Bichler, D. Schuh, and M. Oestreich, Phys. Rev. Lett. 93, 147405 (2004). - 32
K. C. Hall, K. GündoĜdu, J. L. Hicks, A. N. Kocbay, M. E. Flatte, T. F. Boggess, K. Holabird, A. Hunter, D. H. Chow, and J. J. Zinck, Appl. Phys. Lett. 86, 202114 (2005). - 33
V. V. Bel'kov, P. Olbrich, S. A. Tarasenko, D. Schuh, W. Wegscheider, T. Korn, C. Schüller, D. Weiss, W. Prettl, and S. D. Ganichev, Phys. Rev. Lett. 100, 176806 (2008). - 34
M. Römer, J. Hübner, and M. Oestreich, Rev. Sci. Instrum. 78, 103903 (2007). - 35
G. M. Müller, M. Römer, D. Schuh, W. Wegscheider, J. Hübner, and M. Oestreich, Phys. Rev. Lett. 101, 206601 (2008). - 36
G. M. Müller, M. Oestreich, M. Römer, and J. Hübner, Physica E 43, 569 (2010). - 37
A. Balocchi, Q. H. Duong, P. Renucci, B. L. Liu, C. Fontaine, T. Amand, D. Lagarde, and X. Marie, Phys. Rev. Lett. 107, 136604 (2011). - 38
M. Griesbeck, M. M. Glazov, E. Ya. Sherman, D. Schuh, W. Wegscheider, C. Schüller, and T. Korn, Phys. Rev. B 85, 085313 (2012). - 39
H. Q. Ye, G. Wang, B. L. Liu, Z. W. Shi, W. X. Wang, C. Fontaine, A. Balocchi, T. Amand, D. Lagarde, P. Renucci, and X. Marie, Appl. Phys. Lett. 101, 032104 (2012). - 40
K. Biermann, A. Hernández-Mínguez, R. Hey, and P. V. Santos, J. Appl. Phys. 112, 083913 (2012). - 41
A. Hernández-Mínguez, K. Biermann, R. Hey, and P. V. Santos, Phys. Rev. Lett. 109, 266602 (2012). - 42
G. Wang, A. Balocchi, D. Lagarde, C. R. Zhu, T. Amand, P. Renucci, Z. W. Shi, W. X. Wang, B. L. Liu, and X. Marie, Appl. Phys. Lett 102, 242408 (2013). - 43
X. Cartoixa, D. Z.-Y. Ting, and Y.-C. Chang, Appl. Phys. Lett. 83, 1462 (2003). - 44
K. C. Hall, W. H. Lau, K. GündoĜdu, M. E. Flatté, and T. F. Boggess, Appl. Phys. Lett. 83, 2937 (2003). - 45
X. Cartoixa, D. Z. Y. Ting, and Y. C. Chang, J. Supercond. 18, 163 (2005). - 46
Y. Kunihashi, M. Kohda, H. Sanada, H. Gotoh, T. Sogawa, and J. Nitta, Appl. Phys. Lett. 100, 113502 (2012). - 47
B. Jusserand, D. Richards, H. Peric, and B. Etienne, Phys. Rev. Lett. 69, 848 (1992). - 48
B. Jusserand, D. Richards, G. Allan, C. Priester, and B. Etienne, Phys. Rev. B 51, 4707 (1995). - 49
F. G. Pikus and G. E. Pikus, Phys. Rev. B. 51, 16928 (1995). - 50
W. Knap, C. Skierbiszewski, A. Zduniak, E. Litwin-Staszewska, D. Bertho, F. Kobbi, J. L. Robert, G. E. Pikus, F. G. Pikus, S. V. Iordanskii, V. Mosser, K. Zekentes, and Yu. B. Lyanda-Geller, Phys. Rev. B 53, 3912 (1996). - 51
J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-Geller, D. Goldhaber-Gordon, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 90, 076807 (2003). - 52
G. Yu, N. Dai, J. H. Chu, P. J. Poole, and S. A. Studenikin, Phys. Rev. B 78, 035304 (2008). - 53
M. M. Glazov and L. E. Golub, Semicond. Sci. Technol. 24, 064007 (2009). - 54
G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, L. E. Golub, B. N. Zvonkov, and M. Willander, Phys. Rev. B 70, 155323 (2004). - 55
M. Scheid, M. Kohda, Y. Kunihashi, K. Richter, and J. Nitta, Phys. Rev. Lett. 101, 266401 (2008). - 56
M. Scheid, I. Adagideli, J. Nitta, and K. Richter, Semicond. Sci. Techol. 24, 064005 (2009). - 57
Y. Kunihashi, M. Kohda, and J. Nitta, Phys. Rev. Lett. 102, 226601 (2009). - 58
S. D. Ganichev, V. V. Bel'kov, L. E. Golub, E. L. Ivchenko, P. Schneider, S. Giglberger, J. Eroms, J. De Boeck, G. Borghs, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 92, 256601 (2004). - 59
S. Giglberger, L. E. Golub, V. V. Bel'kov, S. N. Danilov, D. Schuh, Ch. Gerl, F. Rohlfing, J. Stahl, W. Wegscheider, D. Weiss, W. Prettl, and S. D. Ganichev, Phys. Rev. B 75, 035327 (2007). - 60
V. Lechner, L. E. Golub, P. Olbrich, S. Stachel, D. Schuh, W. Wegscheider, V. V. Bel'kov, and S. D. Ganichev, Appl. Phys. Lett. 94, 242109 (2009). - 61
M. Bieler, N. Laman, H. M. van Driel, and A. L. Smirl, Appl. Phys. Lett. 86, 061102 (2005). - 62
C. L. Yang, H. T. He, Lu Ding, L. J. Cui, Y. P. Zeng, J. N. Wang, and W. K. Ge, Phys. Rev. Lett. 96, 186605 (2006). - 63
Y. O. Tang, B. Shen, H. W. He, N. Tang, W. H. C. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, Appl. Phys. Lett. 91, 071920 (2007). - 64
H. Zhao, B. Liu, L. Guo, C. Tan, H. Chen, and D. Chen, Appl. Phys. Lett. 91, 252105 (2007). - 65
M. Frazier, J. A. Waugh, J. J. Heremans, M. B. Santos, X. Liu, and G. A. Khodaparast, J. Appl. Phys. 106, 103513 (2009). - 66
J. L. Yu, Y. H. Chen, Y. Liu, C. Y. Jiang, H. Ma, and L. P. Zhu, Appl. Phys. Lett. 100, 152110 (2012). - 67
N. S. Averkiev, L. E. Golub, A. S. Gurevich, V. P. Evtikhiev, V. P. Kochereshko, A. V. Platonov, A. S. Shkolnik, and Yu. P. Efimov, Phys. Rev. B 74, 033305 (2006). - 68
P. S. Eldridge, W. J. H. Leyland, P. G. Lagoudakis, O. Z. Karimov, M. Henini, D. Taylor, R. T. Phillips, and R. T. Harley, Phys. Rev. B 77, 125344 (2008). - 69
A. V. Larionov and L. E. Golub, Phys. Rev. B 78, 033302 (2008). - 70
P. S. Eldridge, W. J. H. Leyland, P. G. Lagoudakis, R. T. Harley, R. T. Phillips, R. Winkler, M. Henini, and D. Taylor, Phys. Rev. B 82, 045317 (2010). - 71
P. S. Eldridge, J. Hübner, S. Oertel, R. T. Harley, M. Henini, and M. Oestreich, Phys. Rev. B 83, 041301 (2011). - 72
D. Stich, J. Zhou, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, M. W. Wu, and C. Schüller, Phys. Rev. Lett. 98, 176401 (2007). - 73
J. L. Cheng, M. W. Wu, and I. C. da Cunha Lima, Phys. Rev. B 75, 205328 (2007). - 74
D. Stich, J. H. Jiang, T. Korn, R. Schulz, D. Schuh, W. Wegscheider, M. W. Wu, and C. Schüller, Phys. Rev. B 76, 073309 (2007). - 75
L. Meier, G. Salis, I. Shorubalko, E. Gini, S. Schön, and K. Ensslin, Nature Phys. 3, 640 (2007). - 76
T. Korn. D. Stich, R. Schulz, D. Schuh, W. Wegscheider, and C. Schüller, Physica E 40, 1542 (2008). - 77
L. Meier, G. Salis, E. Gini, I. Shorubalko, and K. Ensslin, Phys. Rev. B 77, 035305 (2008). - 78
M. Studer, S. Schön, K. Ensslin, and G. Salis, Phys. Rev. B 79, 045302 (2009). - 79
M. Studer, M. P. Walser, S. Baer, H. Rusterholz, S. Schön, D. Schuh, W. Wegscheider, K. Ensslin, and G. Salis, Phys. Rev. B 82, 235320 (2010). - 80
E.L. Ivchenko and S.D. Ganichev, in: Spin Physics in Semiconductors, edited by M. I. Dyakonov (Springer, Berlin, Heidelberg, 2008), pp. 245–277.

- 81
S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University Press, Oxford, 2006).

- 82
E. L. Ivchenko and G. E. Pikus, Superlattices and Other Heterostructures.Symmetry and Optical Phenomena (Springer, Berlin, 1997).

- 83
E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures(Alpha Science Int., Harrow, UK, 2005).

- 84
We remind that the gyrotropic point group symmetry makes no difference between certain components of polar vectors, like electric current or electron momentum, and axial vectors, like a spin or magnetic field, and is described by the gyration tensor [80, 85, 86]. Gyrotropic media are characterized by the linear in light or electron wavevector spatial dispersion resulting in optical activity (gyrotropy) or Rashba/Dresselhaus band spin-splitting in semiconductor structures [80, 86–90], respectively. Among 21 crystal classes lacking inversion symmetry, 18 are gyrotropic, from which 11 classes are enantiomorphic (chiral) and do not possess a reflection plane or rotation-reflection axis [80,88,89]. Three nongyrotropic noncentrosymmetric classes are , and . We note that it is often, but misleading, stated that gyrotropy (optical activity) can be obtained only in noncentrosymmetric crystals having no mirror reflection plane. In fact, seven nonenantiomorphic class groups (, , , , , and ) are gyrotropic allowing addressed above linear in spin splitting, SGE, CPGE, MPGE excited by unpolarized radiation as well as inversed SGE –spin orientation by the electric current, for review see, e.g., ([91]) - 85
L. D. Landau, E. M. Lifshits, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Elsevier, Amsterdam, 1984).

- 86
J. F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford Univ. Press, Oxford, 1985).

- 87
V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons, Springer Series in Solid-State Sciences Vol. 42 (Springer, Berlin, 1984).

- 88
V. A. Kizel’, Yu. I. Krasilov, and V. I. Burkov, Usp. Fiz. Nauk 114, 295 (1974) [Sov. Phys. Usp. 17, 745 (1975)].

- 89
J. Jerphagnon and D. S. Chemla, J. Chem. Phys. 65, 1522 (1976). - 90
B. Koopmans, P. V. Santos, and M. Cardona, Phys. Status Solidi B 205, 419 (1998). - 91
S. D. Ganichev, M. Trushin, and J. Schliemann, in: Handbook of Spin Transport and Magnetism, edited by E.Y. Tsymbal and I. Zutic (Chapman and Hall, London, 2011), pp. 487–497.

- 92
R. F. Tinder, Tensor Properties of Solids: Phenomenological Development of the Tensor Properties of Crystals (Morgan & Claypool Publishers, Malaysia, 2008).

- 93
F. Li, Y. V. Pershin, V. A. Slipko, and N. A. Sinitsyn, Phys. Rev. Lett. 111, 067201 (2013). - 94
Note that following to Ref. ([95]) a dependent Larmor precession frequency of electron spin precession around is commonly used in the literature [23, 49, 95–97] - 95
G. E. Pikus and A. N. Titkov, in: Optical Orientation, edited by F. Meier and B. P. Zakharchenya (North-Holland, Amsterdam, 1984).

- 96
S. V. Iordanskii, Yu. B. Lyanda-Geller, and G. E. Pikus, Pis'ma Zh. Eksp. Teor. Fiz. 60, 199 (1994) [JETP Lett. 60, 206 (1994)].

- 97
L. E. Golub, Physics –Uspekhi 55, 814 (2012). - 98
E. A. de Andrada e Silva, Phys. Rev. B 46, 1921 (1992). - 99
M. A. Toloza Sandoval, A. Ferreira da Silva, E. A. Andrada e Silva, and G. C. La Rocca, Phys. Rev. B 87, 081304(R) (2013). - 100
Note that due to combined effect of SIA and BIA in asymmetric (110) QWs an additional small term is allowed. However, the constant is about an order of magnitude smaller than the Rashba constant in a rectangular QW subjected in electric field V cm ([101]). We also note that in symmetrically doped (110)’grown QWs there are spatial fluctuations of the Rashba constant yielding finite values of which is zero in average. This spatially-fluctuating Rashba splitting leads to spin relaxation which limits the spin dephasing time in symmetrically-doped (110) QWs [102]) - 101
M. O. Nestoklon, S. A. Tarasenko, J.-M. Jancu, and P. Voisin, Phys. Rev. B 85, 205307 (2012). - 102
M. M. Glazov, E. Ya. Sherman, and V. K. Dugaev, Physica E 42, 2157 (2010). - 103
X. Cartoixa, D. Z. Y. Ting, and Y. C. Chang, Phys. Rev. B 71, 045313 (2005). - 104
I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 97, 053707 (2005). - 105
B. Y. Sun, P. Zhang, and M. W. Wu, J. Appl. Phys. 108, 093709 (2010). - 106
R. Ferreira and G. Bastard, Phys. Rev. B 43, 9687 (1991). - 107
G. Bastard and R. Ferreira, Europhys. Lett. 23, 439 (1993). - 108
S. D. Ganichev, S. N. Danilov, V. V. Bel'kov, E. L. Ivchenko, M. Bichler, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 88, 057401 (2002). - 109
P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel'kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Rössler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, J. Appl. Phys. 96, 420 (2004). - 110
T. Korn, M. Kugler, M. Griesbeck, R. Schulz, A. Wagner, M. Hirmer, C. Gerl, D. Schuh, W. Wegscheider, and C. Schüller, New J. Phys. 12, 043003 (2010). - 111
T. Korn, Phys. Rep. 494, 415 (2010). - 112
M. Kugler, T. Andlauer, T. Korn, A. Wagner, S. Fehringer, R. Schulz, M. Kubová, C. Gerl, D. Schuh, W. Wegscheider, P. Vogl, and C. Schüller, Phys. Rev. B 80, 035325 (2009). - 113
M. S. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007). - 114
S. C. Zhang and X. L. Qi, Rev. Mod. Phys. 83, 1057 (2011). - 115
Note that in bulk III–V semiconductors and cubic GaN the constant is zero - 116
S. D. Ganichev, U. Rössler, W. Prettl, E. L. Ivchenko, V. V. Bel'kov, R. Neumann, K. Brunner, and G. Abstreiter, Phys. Rev. B 66, 075328 (2002). - 117
U. Rössler and J. Kainz, Solid State Commun. 121, 313 (2002). - 118
Z. Wilamowski, W. Jantsch, H. Malissa, and U. Rössler, Phys. Rev. B 66, 195315 (2002). - 119
L. E. Golub and E. L. Ivchenko, Phys. Rev. B 69, 115333 (2004). - 120
M. O. Nestoklon, L. E. Golub, and E. L. Ivchenko, Phys. Rev. B 73, 235334 (2006). - 121
M. O. Nestoklon, E. L. Ivchenko, J.-M. Jancu, and P. Voisin, Phys. Rev. B 77, 155328 (2008). - 122
M. Prada, G. Klimek, and R. Joynt, New J. Phys. 13, 013009 (2011). - 123
V. I. Belinicher, Phys. Lett. A 66, 213 (1978). - 124
B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach Science Publishers, New York, 1992).

- 125
E. L. Ivchenko, Yu. B. Lyanda-Geller, and G. E. Pikus, Pis'ma Zh. Eksp. Teor. Fiz. 50, 156 (1989) [JETP Lett. 50, 175 (1989)].

- 126
S. D. Ganichev, E. L. Ivchenko, V. V. Bel'kov, S. A. Tarasenko, M. Sollinger, D. Weiss, W. Wegscheider, and W. Prettl, Nature(London) 417, 153 (2002). - 127
S. D. Ganichev, E. L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, and W. Prettl, Phys. Rev. Lett. 86, 4358 (2001). - 128
S. D. Ganichev, E. L. Ivchenko, and W. Prettl, Physica E 14, 166 (2002). - 129
V. V. Bel'kov, S. D. Ganichev, E. L. Ivchenko, S. A. Tarasenko, W. Weber, S. Giglberger, M. Olteanu, H.-P. Tranitz, S. N. Danilov, P. Schneider, W. Wegscheider, D. Weiss, and W. Prettl, J. Phys.: Condens. Matter 17, 3405 (2005). - 130
L. E. Golub, Phys. Rev. B 67, 235320 (2003). - 131
M. Kohda, V. Lechner, Y. Kunihashi, T. Dollinger, P. Olbrich, C. Schönhuber, I. Caspers, V. V. Bel'kov, L. E. Golub, D. Weiss, K. Richter, J. Nitta, and S. D. Ganichev, Phys. Rev. B 86, 081306 (R) (2012). - 132
Inversed SGE, i.e., spin orientation by electric current (for recent review see ([91])), can also be used for study of BIA/SIA anisotropy. This effect, given by , is observed in several low dimensional systems [62, 133–137] and like SGE reflects the spin splitting anisotropy, see, e.g., [138–142] - 133
S. D. Ganichev, S. N. Danilov, Petra Schneider, V. V. Bel'kov, L. E. Golub, W. Wegscheider, D. Weiss, and W. Prettl, cond-mat/0403641 (2004), see also J. Magn. Magn. Mater. 300, 127 (2006). - 134
A. Yu. Silov, P. A. Blajnov, J. H. Wolter, R. Hey, K. H. Ploog, and N. S. Averkiev, Appl. Phys. Lett. 85, 5929 (2004). - 135
Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Phys. Rev. Lett. 93, 176601 (2004). - 136
V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D. Awschalom, Nature Phys. 1, 31 (2005). - 137
N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D. Awschalom, Phys. Rev. Lett. 97, 126603 (2006). - 138
A. G. Aronov, Yu. B. Lyanda-Geller, and G. E. Pikus, JETP 100, 973 (1991) [Sov. Phys. JETP 73, 537 (1991)].

- 139
A. V. Chaplik, M. V. Entin, and L. I. Magarill, Physica E 13, 744 (2002). - 140
M. Trushin and J. Schliemann, Phys. Rev. B 75, 155323 (2007). - 141
O. E. Raichev, Phys. Rev. B 75, 205340 (2007). - 142
L. E. Golub and E. L. Ivchenko, Phys. Rev. B 84, 115303 (2011). - 143
V. V. Bel'kov and S. D. Ganichev, Semicond. Sci. Technol. 23, 114003 (2008). - 144
V. V. Bel'kov and S. D. Ganichev, in: Handbook of Spintronic Semiconductors, edited by W. M. Chen and I. A. Buyanova (Pan Stanford Publishing, Singapore, 2010), pp. 243–265.

- 145
R. Winkler, in: Handbook of Magnetism and Advanced Magnetic Materials Vol. 5, edited by H. Kronmuller and S. Parkin (John Wiley & Sons, New York, 2007); arXiv:cond-mat/0605390.

- 146
J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher, U. Wurstbauer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, J. Eroms, and S. D. Ganichev, Phys. Rev. Lett. 97, 227402 (2010). - 147
R. V. Romashko, A. I. Grachev, Yu. N. Kulchin, and A. A. Kamshilin, Opt. Express 18, 27142 (2010). - 148
J. Karch, C. Drexler, P. Olbrich, M. Fehrenbacher, M. Hirmer, M. M. Glazov, S. A. Tarasenko, E. L. Ivchenko, B. Birkner, J. Eroms, D. Weiss, R. Yakimova, S. Lara-Avila, S. Kubatkin, M. Ostler, T. Seyller, and S. D. Ganichev, Phys. Rev. Lett. 107, 276601 (2011). - 149
P. Hosur, Phys. Rev. B 83, 035309 (2011). - 150
Z. D. Kvon, S. N. Danilov, D. A. Kozlov, C. Zoth, N. N. Michailov, S. A. Dvoretzkii, and S. D. Ganichev, JETP Lett. 94, 816 (2011) [Pisma ZhETP 94, 895 (2011)].

- 151
J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Nature Nanotechnol. 7, 96 (2012). - 152
B. Dora, J. Cayssol, F. Simon, and R. Moessner, Phys. Rev. Lett. 108, 056602 (2012) - 153
Q. S. Wu, S. N. Zhang, Z. Fang, and X. Dai, Physica E 44, 895 (2012). - 154
C. Drexler, S. A. Tarasenko, P. Olbrich, J. Karch, M. Hirmer, F. Müller, M. Gmitra, J. Fabian, R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev, Nature Nanotechnol. 8, 104 (2013). - 155
P. Olbrich, C. Zoth, P. Vierling, K.-M. Dantscher, G. V. Budkin, S. A. Tarasenko, V. V. Bel'kov, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, Phys. Rev. B 87, 235439 (2013). - 156
S. N. Artemenko and V. O. Kaladzhyan, JETP Lett. 97, 82 (2013). - 157
A. Łusakowski, J. Wróbel, and T. Dietl, Phys. Rev. B 68, R081201 (2003).

- 158
S. Kettemann, Phys. Rev. Lett. 98, 176808 (2007). - 159
W. H. Lau and M. E. Flatté, Phys. Rev. B 72, R161311 (2005).

- 160
S. D. Ganichev, J. Diener, I. N. Yassievich, W. Prettl, B. K. Meyer, and K. W. Benz, Phys. Rev. Lett. 75, 1590 (1995). - 161
E. Ziemann, S. D. Ganichev, I. N. Yassievich, V. I. Perel, and W. Prettl, J. Appl. Phys. 87, 3843 (2000). - 162
S. D. Ganichev, I. N. Yassievich, and W. Prettl, J. Phys.: Condens. Matter 14, R1263 (2002). - 163
Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, Physica E 40, 1885 (2008). - 164
G. M. H. Knippels, X. Yan, A. M. MacLeod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. van der Meer, Phys. Rev. Lett. 83, 1578 (1999). - 165
O. Svelto, Principles of Lasers, fifth ed. (Springer, New York, 2010).

- 166
W. Weber, L. E. Golub, S. N. Danilov, J. Karch, C. Reitmaier, B. Wittmann, V. V. Bel'kov, E. L. Ivchenko, Z. D. Kvon, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, Phys. Rev. B 77, 245304 (2008). - 167
B. Wittmann, L. E. Golub, S. N. Danilov, J. Karch, C. Reitmaier, Z. D. Kvon, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, S. D. Ganichev, Phys. Rev. B 78, 205435 (2008). - 168
B. Wittmann, S. N. Danilov, V. V. Bel'kov, S. A. Tarasenko, E. G. Novik, H. Buhmann, C. Brüne, L. W. Molenkamp, E. L. Ivchenko, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, Semicond. Sci. Technol. 25, 095005 (2010). - 169
S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, J. Appl. Phys. 105, 013106 (2009). - 170
Ch. Jiang, H. Ma, J. Yu, Y. Liu, and Y. Chen, Appl. Phys. Lett. 99, 032106 (2011). - 171
V. V. Bel'kov, S. D. Ganichev, P. Schneider, C. Back, M. Oestreich, J. Rudolph, D. Hägele, L. E. Golub, W. Wegscheider, W. Prettl, Solid State Commun. 128, 283 (2003). - 172
K. S. Cho, Y. F. Chen, Y. Q. Tang, and B. Shen, Appl. Phys. Lett. 90, 041909 (2007). - 173
J. Dai, H.-Z. Lu, C. L. Yang, S.-Q. Shen, F.-C. Zhang, and X. Cui, Phys. Rev. Lett. 104, 246601 (2010). - 174
Q. Zhang, X. Q. Wang, C. M. Yin, F. Y. Xu, N. Tang, B. Shen, Y. H. Shen, K. Chang, W. K. Ge, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 97, 041907 (2010). - 175
S. Priyadarshi, K. Pierz, and M. Bieler, Appl. Phys. Lett. 102, 112102 (2013). - 176
K. Sakai, Terahertz Optoelectronics, Topics in Applied Physics (Springer, Berlin, 2005).

- 177
Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, Berlin, 2009).

- 178
C. Drexler, V. V. Bel'kov, B. Ashkinadze, P. Olbrich, C. Zoth, V. Lechner, Ya. V. Terent'ev, D. R. Yakovlev, G. Karczewski, T. Wojtowicz, D. Schuh, W. Wegscheider, and S. D. Ganichev, Appl. Phys. Lett. 97, 182107 (2010). - 179
S. D. Ganichev, V. V. Bel'kov, S. A. Tarasenko, S. N. Danilov, S. Giglberger, Ch. Hoffmann, E. L. Ivchenko, D. Weiss, W. Wegscheider, Ch. Gerl, D. Schuh, J. Stahl, J. De Boeck, G. Borghs, and W. Prettl, Nature Phys. 2, 609 (2006). - 180
D. Sun, C. Divin, J. Rioux, J. E. Sipe, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, Nano Lett. 10, 1293 (2010). - 181
D. Sun, J. Rioux, J. E. Sipe, Y. Zou, M. T. Mihnev, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, Phys. Rev. B 85, 165427 (2012). - 182
P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. QE-24, 255 (1988). - 183
X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990). - 184
Note that the influence of QW shape on photogalvanic and magneto-photogalvanic effects have been analyzed in Refs. [185–187]

- 185
K. Majchrowski, W. Pasko, and I. Tralle, Phys. Lett. A 373 2959 (2009). - 186
K. Majchrowski, W. Pasko, and I. Tralle, Acta Phys. Polon. A 116, 854 (2009). - 187
M. V. Entin and L. I. Magarill, JETP Lett. 97, 639 (2013). - 188
M. P. Walser, U. Siegenthaler, V. Lechner, D. Schuh, S. D. Ganichev, W. Wegscheider, and G. Salis, Phys. Rev. B 86, 195309 (2012). - 189
P. Walser, C. Reichl, W. Wegscheider, and G. Salis, Nature Phys. 8, 757 (2012). - 190
M. J. Snelling, G. P. Flinn, A. S. Plaut, R. T. Harley, A. C. Tropper, R. Eccleston, and C. C. Phillips, Phys. Rev. B 44, 11345 (1991). - 191
E. L. Ivchenko, A. A. Kiselev, and M. Willander, Solid State Commun. 102, 375 (1997). - 192
G. Salis, Y. Kato, K. Ensslin, D. C. Driscoll, A. C. Gossard, and D. D. Awschalom, Nature 414, 619 (2001). - 193
I. A. Yugova, A. Greilich, D. R. Yakovlev, A. A. Kiselev, M. Bayer, V. V. Petrov, Yu. K. Dolgikh, D. Reuter, and A. D. Wieck, Phys. Rev. B 75, 245302 (2007). - 194
M. Kugler, T. Andlauer, T. Korn, A. Wagner, S. Fehringer, R. Schulz, M. Kubova, C. Gerl, D. Schuh, W. Wegscheider, P. Vogl, and C. Schüller, Phys. Rev. B 80, 035325 (2009). - 195
V. Lechner, L. E. Golub, F. Lomakina, V. V. Bel'kov, P. Olbrich, S. Stachel, I. Caspers, M. Griesbeck, M. Kugler, M. J. Hirmer, T. Korn, C. Schüller, D. Schuh, W. Wegscheider, and S. D. Ganichev, Phys. Rev. B 83, 155313 (2011). - 196
S. A. Tarasenko, Phys. Rev. B 77, 085328 (2008). - 197
G. Lommer, F. Malcher, and U. Rössler, Phys. Rev. Lett. 60, 728 (1988). - 198
J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78, 1335 (1997). - 199
J. Li, A. M. Gilbertson, K. L. Litvinenko, L. F. Cohen, and S. K. Clowes, Phys. Rev. B 85, 045431 (2012). - 200
S. Stachel, P. Olbrich, C. Zoth, U. Hagner, T. Stangl, C. Karl, P. Lutz, V. V. Bel'kov, S. K. Clowes, T. Ashley, A. M. Gilbertson, and S. D. Ganichev, Phys. Rev. B 85, 045305 (2012). - 201
H. Diehl, V. A. Shalygin, S. N. Danilov, S. A. Tarasenko, V. V. Bel'kov, D. Schuh, W. Wegscheider, W. Prettl, and S. D. Ganichev, J. Phys.: Condens. Matter 19, 436232 (2007).

- 202
H. Diehl, V. A. Shalygin, L. E. Golub, S. A. Tarasenko, S. N. Danilov, V. V. Bel'kov, E. G. Novik, H. Buhmann, L. W. Molenkamp, C. Brüne, E. L. Ivchenko, and S. D. Ganichev, Phys. Rev. B 80, 075311 (2009). - 203
G. A. Khodaparast, R. E. Doezema, S. J. Chung, K. J. Goldammer, and M. B. Santos, Phys. Rev. B 70, 155322 (2004). - 204
A. M. Gilbertson, W. R. Branford, M. Fearn, L. Buckle, P. D. Buckle, T. Ashley, and L. F. Cohen, Phys. Rev. B 79, 235333 (2009). - 205
R. L. Kallaher, J. J. Heremans, N. Goel, S. J. Chung, and M. B. Santos, Phys. Rev B 81, 075303 (2010). - 206
M. Akabori1, V. A. Guzenko, T. Sato, Th. Schäpers, T. Suzuki, and S. Yamada, Phys. Rev. B 77, 205320 (2008). - 207
M. A. Leontiadou, K. L. Litvinenko, A. M. Gilbertson, C. R. Pidgeon, W. R. Branford, L. F. Cohen, M. Fearn, T. Ashley, M. T. Emeny, B. N. Murdin, and S. K. Clowes, J. Phys.: Condens. Matter 23, 035801 (2011).

- 208
L. E. Golub, Physica E 17, 342 (2003). - 209
H. T. Duc, J. Förstner, and T. Meier, Phys. Rev. B 82, 115316 (2010). - 210
H.-Z. Lu, B. Zhou, F.-C. Zhang, and S.-Q. Shen, Phys. Rev. B 83, 125320 (2011). - 211
J. L. Yu, Y. H. Chen, C. Y. Jiang, Y. Liu, and H. Ma, J. Appl. Phys. 109, 053519 (2011). - 212
J. L. Yu, Y. H. Chen, C. Y. Jiang, Y. Liu, H. Ma, and L. P. Zhu, Appl. Phys. Lett. 100, 142109 (2012). - 213
J. Yu, Y. Chen, S. Cheng, and Y. Lai, Physica E 49, 92 (2013). - 214
S. A. Tarasenko and N. S. Averkiev, Pis'ma ZhETF 75, 669 (2002) [JETP Lett. 75, 552 (2002)].

- 215
N. S. Averkiev, M. M. Glazov, and S. A. Tarasenko, Solid State Commun. 133, 543 (2005). - 216
W. Desrat, D. K. Maude, Z. R. Wasilewski, R. Airey, and G. Hill, Phys. Rev. B 74, 193317 (2006). - 217
M.-H. Liu, K.-W. Chen, S.-H. Chen, and C.-R. Chang, Phys. Rev. B 74, 235322 (2006). - 218
J. L. Cheng and M. W. Wu, J. Appl. Phys. 99, 083704 (2006). - 219
B. A. Bernevig and J. Hu, Phys. Rev. B 78, 245123 (2008). - 220
J. Li and K. Chang, Phys. Rev. B 82, 033304 (2010). - 221
V. A. Slipko, I. Savran, Yu. V. Pershin, Phys. Rev. B 83, 193302 (2011). - 222
V. A. Slipko, A. A. Hayeva, and Yu. V. Pershin, Phys. Rev. B 87, 035430 (2013). - 223
Note that the electron density and sample temperature can also affect both linear and cubic in Dresselhaus terms, see Eq. (8), (9) and related discussion. While this influence is small in materials with weak cubic in *k* spin splitting in narrow band semiconductors like InAs-based QWs it may play an important role, see Section 5.2 - 224
G. Engels, J. Lange, Th. Schäpers, and H. Lüth, Phys. Rev. B 55, R1958 (1997). - 225
T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, Phys. Rev. Lett. 89, 046801 (2002). - 226
S. Faniel, T. Matsuura, S. Mineshige, Y. Sekine, and T. Koga, Phys. Rev. B 83, 115309 (2011). - 227
M. M. Glazov and L. E. Golub, Semiconductors 40, 1209 (2006). - 228
T. D. Stanescu and V. Galitski, Phys. Rev. B 75, 125307 (2007). - 229
M. Duckheim, D. Loss, M. Scheid, K. Richter, I. Adagideli, and P. Jacquod, Phys. Rev. B 81, 085303 (2010). - 230
M. C. Lüffe, J. Kailasvuori, and T. S. Nunner, Phys. Rev. B 84, 075326 (2011). - 231
S. Faniel, T. Matsuura, S. Mineshige, Y. Sekine, and T. Koga, Phys. Rev. B 83, 115309 (2011). - 232
M. Scheid, M. Kohda, Y. Kunihashi, K. Richter, and J. Nitta, Phys. Rev. Lett. 101, 266401 (2008). - 233
T. Hassenkam, S. Pedersen, K. Baklanov, A. Kristensen, C. B. Sorensen, P. E. Lindelof, F. G. Pikus, and G. E. Pikus, Phys. Rev. B 55, 9298 (1997). - 234
K. C. Hall, K. GündoĜdu, E. Altunkaya, W. H. Lau, M. E. Flatté, T. F. Boggess, J. J. Zinck, W. B. Barvosa-Carter, and S. L. Skeith, Phys. Rev. B 68, 115311 (2003). - 235
M. Henini, O. Z. Karimov, G. H. John, R. T. Harley, and R. J. Airey, Physica E 23 309 (2004). - 236
K. Morita, H. Sanada, S. Matsuzaka, C. Y. Hu, Y. Ohno, and H. Ohno, Appl. Phys. Lett. 87, 171905 (2005). - 237
K. C. Ku, S. H. Chun, W. H. Wang, W. Fadgen, D. A. Issadore, N. Samarth, R. J. Epstein, and D. D. Awschalom, J. Supercond. 18, 185 (2005).

- 238
J. Hicks, K. GündoĜdu, A. N. Kocbay, K. C. Hall, T. F. Boggess, K. Holabird, A. Hunter, and J. J. Zinck, Physica E 34, 371 (2006).

- 239
O. D. D. Couto, Jr., F. Iikawa, J. Rudolph, R. Hey, and P. V. Santos, Phys. Rev. Lett. 98, 036603 (2007). - 240
L. Schreiber, D. Duda, B. Beschoten, G. Güntherodt, H.-P. Schönherr, and J. Herfort, Phys. Status Solidi B 244, 2960 (2007). - 241
L. Schreiber, D. Duda, B. Beschoten, G. Güntherodt, H.-P. Schönherr, and J. Herfort, Phys. Rev. B 75, 193304 (2007). - 242
S. Eldridge, P. G. Lagoudakis, M. Henini, and R. T. Harley, Phys. Rev. B 81, 033302 (2010). - 243
S. Iba, S. Koh, and H. Kawaguchi, Appl. Phys. Lett. 97 202102 (2010). - 244
R. Völkl, M. Griesbeck, S. A. Tarasenko, D. Schuh, W. Wegscheider, C. Schüller, and T. Korn, Phys. Rev. B 83, 241306(R) (2011). - 245
J. Hübner, S. Kunz, S. Oertel, D. Schuh, M. Pochwała, H. T. Duc, J. Förstner, T. Meier, and M. Oestreich, Phys. Rev. B 84, 041301(R) (2011). - 246
M. W. Wu and M. Kuwata-Gonokami, Solid State Commun. 121, 509 (2002). - 247
S. W. Chang and S. L. Chuang, Phys. Rev. B 72 115429 (2005). - 248
S. A. Tarasenko, Phys. Rev. B 80, 165317 (2009). - 249
M. M. Glazov, M. A. Semina, and E. Ya. Sherman, Phys. Rev. B 81, 115332 (2010). - 250
Y. Zhou and M. W. Wu, Europhys. Lett. 89, 57001 (2010). - 251
A. V. Poshakinskiy and S. A. Tarasenko, Phys. Rev. B 87, 235301 (2013). - 252
P. Olbrich, J. Allerdings, V. V. Bel'kov, S. A. Tarasenko, D. Schuh, W. Wegscheider, T. Korn, C. Schüller, D. Weiss, and S. D. Ganichev, Phys. Rev. B 79, 245329 (2009). - 253
H. Zhao, X. Pan, A. L. Smirl, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, Phys. Rev. B 72, 201302(R) (2005).

- 254
V. A. Shalygin, H. Diehl, Ch. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, Ch. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, JETP Lett. 84, 570 (2006). - 255
H. Diehl, V. A. Shalygin, V. V. Bel'kov, Ch. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, Ch. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, New J. Phys. 9, 349 (2007) [special issue Focus on Spintronics in Reduced Dimensions”].

- 256
K. G. Hu, Solid State Commun. 148, 283 (2008). - 257
S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode. The Complete Story (Springer, Berlin, 2007).

- 258
Q. Chen, M. Asif Khan, J. W. Yang, C. J. Sun, M. S. Shur, and H. Park, Appl. Phys. Lett. 69, 794 (1996). - 259
Y.-F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Appl. Phys. Lett. 69, 1438 (1996). - 260
O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999). - 261
T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000). - 262
S. Dhar, O. Brandt, M. Ramsteiner, V. F. Sapega, and K. H. Ploog, Phys. Rev. Lett. 94, 037205 (2005). - 263
G. M. Dalpian and S.-H. Wei, Phys. Rev. B 72, 115201 (2005). - 264
S. Dhar, T. Kammermeier, A. Ney, L. Pérez, K. H. Ploog, A. Melnikov, and A. D. Wieck, Appl. Phys. Lett. 89, 062503 (2006). - 265
M. A. Khaderbad, S. Dhar, L. Pérez, K. H. Ploog, A. Melnikov, and A. D. Wieck, Appl. Phys. Lett. 91, 072514 (2007). - 266
J. H. Buss, J. Rudolph, S. Shvarkov, F. Semond, D. Reuter, A. D. Wieck, and D. Hägele, Appl. Phys. Lett. 103, 92401 (2013). - 267
B. Beschoten, E. Johnston-Halperin, D. K. Young, M. Poggio, J. E. Grimaldi, S. Keller, S. P. DenBaars, U. K. Mishra, E. L. Hu, and D. D. Awschalom, Phys. Rev. B 63, 121202 (2001). - 268
J. H. Buß, J. Rudolph, F. Natali, F. Semond, and D. Hägele, Phys. Rev. B 81, 155216 (2010). - 269
J. H. Buß, J. Rudolph, S. Starosilec, A. Schaefer, F. Semond, Y. Cordier, A. D. Wieck, and D. Hägele, Phys. Rev. B 84, 153202 (2011). - 270
W. Weber, S. D. Ganichev, Z. D. Kvon, V. V. Bel'kov, L. E. Golub, S. N. Danilov, D. Weiss, W. Prettl, H.-I. Cho, and J.-H. Lee, Appl. Phys. Lett. 87, 262106 (2005). - 271
R. Cingolani, A. Botchkarev, H. Tang, H. Morkoc, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, and P. Lugli, Phys. Rev. B 61, 2711 (2000). - 272
V. I. Litvinov, Phys. Rev. B 68, 155314 (2003). - 273
X. W. He, B. Shen, Y. Q. Tang, N. Tang, C. M. Yin, F. J. Xu, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, and Z. G. Wang, Appl. Phys. Lett. 91, 071912 (2007). - 274
Y. Q. Tang, B. Shen, X. W. He, K. Han, N. Tang, W. H. Chen, Z. J. Yang, G. Y. Zhang, Y. H. Chen, C. G. Tang, Z. G. Wang, K. S. Cho, and Y. F. Chen, Appl. Phys. Lett. 91, 071920 (2007). - 275
K. S. Cho, C.-T. Liang, Y. F. Chen, Y. Q. Tang, and B. Shen, Phys. Rev. B 75, 071912 (2007). - 276
W. Weber, S. Seidl, V. V. Bel'kov, L. E. Golub, E. L. Ivchenko, W. Prettl, Z. D. Kvon, H.-I. Cho, J.-H. Lee, and S. D. Ganichev, Solid State Commun. 145, 56 (2008). - 277
N. Tang, B. Shen, K. Han, F.-C. Lu, F.-J. Xu, Z.-X. Qin, and G.-Y. Zhang, Appl. Phys. Lett. 93, 172113 (2008). - 278
K. S. Cho, T.-Y. Huang, H.-S. Wang, M.-G. Lin, T.-M. Chen, C.-T. Liang, Y. F. Chen, and I. Lo, Appl. Phys. Lett. 86, 222102 (2005). - 279
N. Thillosen, Th. Schäpers, N. Kaluza, H. Hardtdegen, and V. A. Guzenko, Appl. Phys. Lett. 88, 022111 (2006). - 280
S. Schmult, M. J. Manfra, A. Punnoose, A. M. Sergent, K. W. Baldwin, and R. J. Molnar, Phys. Rev. B 74, 033302 (2006). - 281
N. Tang, B. Shen, M. J. Wang, K. Han, Z. J. Yang, K. Xu, G. Y. Zhang, T. Lin, B. Zhu, W. Z. Zhou, and J. H. Chu, Appl. Phys. Lett. 88, 172112 (2006). - 282
D. Spirito, L. Di Gaspare, G. Frucci, F. Evangelisti, A. Di Gaspare, A. Natargiacomo, E. Giovine, S. Roddaro, and F. Beltram, Phys. Rev. B 83, 155318 (2011). - 283
Z. Zhang, R. Zhang, B. Liu, Z. L. Xie, X. Q. Xiu, P. Han, H. Lu, Y. D. Zheng, Y. H. Chen, C. G. Tang, and Z. G. Wang, Solid State Commun. 145, 159 (2008). - 284
Q. Zhang, X. Q. Wang, X. W. He, C. M. Yin, F. J. Xu, B. Shen, Y. H. Chen, Z. G. Wang, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 95, 031902 (2009). - 285
Z. Zhang, R. Zhang, Z. L. Xie, B. Liu, M. Li, D. Y. Fu, H. N. Fang, X. Q. Xiu, H. Lu, Y. D. Zheng, Y. H. Chen, C. G. Tang, and Z. G. Wang, Solid State Commun. 149, 1004 (2009). - 286
J. X. Duan, N. Tang, J. D. Ye, F. H. Mei, K. L. Teo, Y. H. Chen, W. K. Ge, and B. Shen, Appl. Phys. Lett. 102, 192405 (2013). - 287
H. Malissa, W. Jantsch, M. Mühlberger, F. Schäffler, Z. Wilamowski, M. Draxler, and P. Bauer, Appl. Phys. Lett. 85, 1739 (2004). - 288
A. M. Tyryshkin, S. A. Lyon, W. Jantsch, and F. Schäffler, Phys. Rev. Lett. 94, 126802 (2005). - 289
J. Matsunami, M. Ooya, and T. Okamoto, Phys. Rev. Lett. 97, 066602 (2006). - 290
S. D. Ganichev, S. N. Danilov, V. V. Bel'kov, S. Giglberger, S. A. Tarasenko, E. L. Ivchenko, D. Weiss, W. Jantsch, F. Schäffler, D. Gruber, and W. Prettl, Phys. Rev. B 75, 155317 (2007) - 291
C. M. Wei, K. S. Cho, Y. F. Chen, Y. H. Peng, C. W. Chiu, and C. H. Kuan, Appl. Phys. Lett. 91, 252102 (2007). - 292
S. D. Ganichev, J. Kiermaier, W. Weber, S. N. Danilov, D. Schuh, Ch. Gerl, W. Wegscheider, D. Bougeard, G. Abstreiter, and W. Prettl, Appl. Phys. Lett. 91, 091101 (2007). - 293
S. D. Ganichev, E. L. Ivchenko, H. Ketterl, W. Prettl, and L. E. Vorobjev, Appl. Phys. Lett. 77, 3146 (2000). - 294
D. A. Vasyukov, A. S. Plaut, and M. Henini, Physica E 42, 964 (2010). - 295
D. A. Vasyukov, A. S. Plaut, A. H. Macdonald, and M. Henini, Int. J. Mod. Phys. B 23, 2867 (2009). - 296
A. Lorke, S. Wimmer, B. Jager, J. P. Kotthaus, W. Wegscheider, and M. Bichler, Physica(Amsterdam) 249–251B, 312 (1998). - 297
P. Olbrich, J. Karch, E. L. Ivchenko, J. Kamann, B. März, M. Fehrenbacher, D. Weiss, and S. D. Ganichev, Phys. Rev. B 83, 165320 (2011). - 298
P. Olbrich, E. L. Ivchenko, T. Feil, R. Ravash, S. D. Danilov, J. Allerdings, D. Weiss, and S. D. Ganichev, Phys. Rev. Lett. 103, 090603 (2009). - 299
E. S. Kannan, I. Bisotto, J.-C. Portal, R. Murali, and T. J. Beck, Appl. Phys. Lett. 98, 193505 (2011). - 300
E. L. Ivchenko and S. D. Ganichev, JETP Lett. 93, 673 (2011). - 301
Ch. Jiang, Y. Chen, H. Ma, J. Yu, and Y. Liu, Appl. Phys. Lett. 98, 232116 (2011). - 302
S. D. Ganichev, S. A. Tarasenko, V. V. Bel'kov, P. Olbrich, W. Eder, D. R. Yakovlev, V. Kolkovsky, W. Zaleszczyk, G. Karczewski, T. Wojtowicz, and D. Weiss, Phys. Rev. Lett. 102, 156602 (2009). - 303
Ya. V. Terent'ev, C. Zoth, V. V. Bel'kov, P. Olbrich, C. Drexler, V. Lechner, P. Lutz, A. N. Semenov, V. A. Solov'ev, I. V. Sedova, G. V. Klimko, T. A. Komissarova, S. V. Ivanov, and S. D. Ganichev, Appl. Phys. Lett. 99, 072111 (2011). - 304
P. Olbrich, C. Zoth, P. Lutz, C. Drexler, V. V. Bel'kov, Ya. V. Terent'ev, S. A. Tarasenko, A. N. Semenov, S. V. Ivanov, D. R. Yakovlev, T. Wojtowicz, U. Wurstbauer, D. Schuh, and S. D. Ganichev, Phys. Rev. B 85, 085310 (2012).