Nondestructive detection of damage in carbon fibre composites by SQUID magnetometry


  • A. Ruosi

    Corresponding author
    1. CRS-Coherentia, National Institute of Matter Physics (INFM), Italy
    2. Dept. of Physical Sciences, Università di Napoli “Federico II”, P. Tecchio 80, 80125 Napoli, Italy
    • Phone: +39 081 768 2611, Fax: +39 081 239 1821
    Search for more papers by this author


Monitoring of structural integrity is an essential issue in enhancing the affordability as well the safety of modern aircraft and spacecraft structures. Increasingly, metallic parts of aircrafts are being replaced by carbon fibre composite components due to their high strength and stiffness combined with low density. This paper reviews of the use of superconducting quantum interference devices (SQUIDs) in the detection of different types of damage in carbon fibre panels. The results presented here on impact damage on carbon fibre reinforced polymer and cracks induced by tensile loads on carbon fibre reinforced carbon matrix show that this method is sensitive not only to the presence but also the severity of damage. Indeed, it enables one to distinguish between the different failure mechanisms as the damage process evolves. SQUIDs response to artificial delaminations, flaws and deep-lying defects are also presented. The application of a neural network system for the detection of impact damage in a noisy environment is discussed. Experimental results demonstrate that nondestructive evaluation using SQUID magnetometers is a suitable technique to investigate composites to improve their mechanical properties. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)