Formation of defects in cubic GaN grown on nano-patterned 3C-SiC (001)

Authors


Abstract

We report an anisotropic formation of defects in cubic GaN grown on nano-patterned 3C-SiC/Si (001) by molecular beam epitaxy. Nano-patterning of 3C-SiC/Si (001) is achieved by nanosphere lithography and a reactive ion etching process. Atomic force microscopy and scanning electron microscopy show that the selective-area-grown cubic GaN nucleates in two structurally different domains, which most probably originate from the substrate. In adjacent domains the formation of defects, especially hexagonal inclusions, is different and leads to two different surface morphologies. The dominant phase within these domains was measured by electron backscatter diffraction. Optical properties were investigated by micro-photoluminescence and cathodoluminescence spectroscopy (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Ancillary