SEARCH

SEARCH BY CITATION

Keywords:

  • multicrystalline Si;
  • EBIC;
  • metal contamination;
  • dislocation;
  • grain boundary

Abstract

The effect of iron and copper contamination on the recombination properties of extended defects in multicrystalline Si is investigated by the Electron Beam Induced Current (EBIC) method. Plastically deformed Si samples containing dislocations and dislocation trails are also studied for a comparison. It is shown that Fe contamination leads to an essential increase of the EBIC contrast of electrically active grain boundaries and dislocation trails. The EBIC contrast of deformation induced dislocations also increases after iron diffusion while the recombination activity of grown-in dislocations in multicrystalline Si does not practically change after such treatment. Cu contamination also leads to an essential increase of the EBIC contrast of electrically active grain boundaries and dislocation trails. But dislocation contrast in both plastically deformed Si and multicrystalline Si does not practically increase after Cu contamination. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)