SEARCH

SEARCH BY CITATION

References

  • [1]
    World Energy Council, World Energy Issues Monitor 2013.
  • [2]
    Intergovernmental Panel on Climate Change, Climate Change 2007: Mitigation of Climate Change.
  • [3]
    M. A. Green, Third generation photovoltaics: Ultra-high conversion efficiency at low cost, Prog. Photovolt.: Res. Appl. 9, 123 (2001).
  • [4]
    W. Shockley and H. J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells, J. Appl. Phys. 32, 510 (1961).
  • [5]
    F. Dimroth and S. Kurtz, High-efficiency multijunction solar cells, MRS Bull. 32, 230 (2007).
  • [6]
    M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Solar cell efficiency tables (version 41), Prog. Photovolt. Res. Appl. 21, 1 (2013).
  • [7]
    A. Luque and V. Andreev(eds.), Concentrator Photovoltaics (Springer, Berlin, 2007).
  • [8]
    S. Chattopadhyay, L.-C. Chen and K.-H. Chen, Energy production and conversion applications of one-dimensional semiconductor nanostructures, NPG Asia Mater. 3, 74 (2011).
  • [9]
    K. Sun, A. Kargar, N. Park, K. N. Madsen, P. W. Naughton, T. Bright, Y. Jing, and D. Wang, Compound semiconductor nanowire solar cells, IEEE J. Sel. Top. Quantum Electron. 17, 1033 (2011).
  • [10]
    Z. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, and Ali Javey, Challenges and prospects of nanopillar-based solar cells, Nano Res. 2, 829 (2009).
  • [11]
    M. T. Borgstrom, J. Wallentin, M. Heurlin, S. Falt, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, Nanowires with promise for photovoltaics, IEEE J. Sel. Top. Quantum Electron. 17, 1050 (2011).
  • [12]
    L. Tsakalakos, Nanostructures for photovoltaics, Mater. Sci. Eng. R. 62, 175 (2008).
  • [13]
    A. M. Morales and C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279, 208 (1998).
  • [14]
    R. S. Wagner and W. C. Ellis, Vapor–liquid–solid mechanism of single crystal growth, Appl. Phys. Lett. 4, 89 (1964).
  • [15]
    E. I. Givargizov, Fundamental aspects of VLS growth, J. Cryst. Growth 31, 20 (1975).
  • [16]
    M. E. Messing, K. Hillerich, J. Bolinsson, K. Storm, J. Johansson, K. A. Dick, and K. Deppert, A comparative study of the effect of gold seed particle preparation method on nanowire growth, Nano Res. 3, 506 (2010).
  • [17]
    A. Gustafsson, K. Hillerich, M. E. Messing, K. Storm, K. A. Dick, K. Deppert, and J. Bolinsson, A cathodoluminescence study of the influence of the seed particle preparation method on the optical properties of GaAs nanowires, Nanotechnology 23, 265704 (2012).
  • [18]
    T. Martensson, M. Borgstrom, W. Seifert, B. J. Ohlsson, and L. Samuelson, Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth, Nanotechnology 14, 1255 (2003).
  • [19]
    T. Martensson, P. Carlberg, M. Borgstrom, L. Montelius, W. Seifert, and L. Samuelson, Nanowire arrays defined by nanoimprint lithography, Nano Lett. 4, 699 (2004).
  • [20]
    V. G. Dubrovskii, M. A. Timofeeva, and M. Tchernycheva, Lateral growth and shape of semiconductor nanowires, Semiconductors 47, 50 (2013).
  • [21]
    V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, I. P. Soshnikov, W. H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.-P. Nys, D. Stievenard, M. Moewe, L. C. Chuang, and C. Chang-Hasnain, Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP and GaAs nanowires, Phys. Rev. B 79, 205316 (2009).
  • [22]
    N. V. Sibirev, V. G. Dubrovskii, G. E. Cirlin, V. A. Egorov, Y. B. Samsonenko, and V. M. Ustinov, Deposition-rate dependence of the height of GaAs-nanowires, Semiconductors 42, 1259 (2008).
  • [23]
    V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, M. Tchernycheva, J. C. Harmand, and V. M. Ustinov, Shape modification of III–V nanowires: The role of nucleation on sidewalls, Phys. Rev. E 77, 031606 (2008).
  • [24]
    V. G. Dubrovskii, N. V. Sibirev, R. A. Suris, G. E. Cirlin, J. C. Harmand, and V. M. Ustinov, Diffusion-controlled growth of semiconductor nanowires: Vapor pressure versus high vacuum deposition, Surf. Sci. 601, 4395 (2007).
  • [25]
    J.-C. Harmand, F. Glas, and G. Patriarche, Growth kinetics of a single InP1–xAsx nanowire, Phys. Rev. B 81, 235436 (2010).
  • [26]
    O. Salehzadeh and S. P. Watkins, Control of GaAs nanowire morphology by group III precursor chemistry, J. Cryst. Growth 325, 5 (2011).
  • [27]
    H. Xu, Y. Wang, Y. Guo, Z. Liao, Q. Gao, N. Jiang, H. H. Tan, C. Jagadish, and J. Zou, High-density, defect-free and taper-restrained epitaxial GaAs nanowires induced from annealed Au thin films, Cryst. Growth Des. 12, 2018 (2012).
  • [28]
    N. V. Sibirev, M. Tchernycheva, M. A. Timofeeva, J. C. Harmand, G. E. Cirlin, and V. G. Dubrovskii, Influence of shadow effect on the growth and shape of InAs nanowires, J. Appl. Phys. 111, 104317 (2012).
  • [29]
    M. T. Borgstrom, G. Immink, B. Ketelaars, R. Algra, and E. P. A. M. Bakkers, Synergetic nanowire growth, Nature Nanotechnol. 2, 541 (2007).
  • [30]
    S. Plissard, K. A. Dick, G. Larrieu, S. Godey, A. Addad, X. Wallart, and P. Caroff, Gold-free growth of GaAs nanowires on silicon: arrays and polytypism, Nanotechnology 21, 385602 (2010).
  • [31]
    B. Bauer, A. Rudolph, M. Soda, A. Fontcuberta i Morral, J. Zweck, D. Schuh, and E. Reiger, Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy, Nanotechnology 21, 435601 (2010).
  • [32]
    A. Fontcuberta i Morral, C. Colombo, G. Abstreiter, J. Arbiol, and J. R. Morante, Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Appl. Phys. Lett. 92, 063112 (2008).
  • [33]
    B. Mandl, J. Stangl, E. Hilner, A. A. Zakharov, K. Hillerich, A. W. Dey, L. Samuelson, G. Bauer, K. Deppert, and A. Mikkelsen, Growth mechanism of self-catalyzed group III–V nanowires, Nano Lett. 10, 4443 (2010).
  • [34]
    A. Fontcuberta i Morral, Gold-Free GaAs Nanowire Synthesis and Optical Properties, IEEE J. Sel. Top. Quantum Electron. 17, 819 (2011).
  • [35]
    C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta i Morral, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy, Phys. Rev. B 77, 155326 (2008).
  • [36]
    S. Plissard, G. Larrieu, X. Wallart, and P. Caroff, High yield of self-catalyzed GaAs nanowire arrays grown on silicon via gallium droplet positioning, Nanotechnology 22, 275602 (2011).
  • [37]
    P. Krogstrup, H. I. Jørgensen, E. Johnson, M. H. Madsen, C. B. Sørensen, A. Fontcuberta i Morral, M. Aagesen, J. Nygård, and F. Glas, Theoretical formalism and modeling of III–V nanowire growth dynamics, arXiv:1301.7441 [cond-mat.mes-hall].
  • [38]
    M. R. Ramdani, J. C. Harmand, F. Glas, G. Patriarche, and L. Travers, Arsenic Pathways in Self-Catalyzed Growth of GaAs Nanowires, Cryst. Growth Des. 13, 91 (2013).
  • [39]
    D. Dalacu, A. Kam, D. G. Austing, X. Wu, J. Lapointe, G. C Aers, and P. J. Poole, Selective-area vapour–liquid–solid growth of InP nanowires, Nanotechnology 20, 395602 (2009).
  • [40]
    M. Bar-Sadan, J. Barthel, H. Shtrikman, and L. Houben, Direct imaging of single Au atoms within GaAs nanowires, Nano Lett. 12, 2352 (2012).
  • [41]
    S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications, Nano Lett. 11, 1276 (2011).
  • [42]
    L. Ahtapodov, J. Todorovic, P. Olk, T. Mjåland, P. Slåttnes, D. L. Dheeraj, A. T. J. van Helvoort, B.-O. Fimland, and H. Weman, A story told by a single nanowire: optical properties of wurtzite GaAs, Nano Lett. 12, 6090 (2012).
  • [43]
    K. Ikejiri, J. Noborisaka, S. Hara, J. Motohisa, and T. Fukui, Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE, J. Cryst. Growth 298, 616 (2007).
  • [44]
    D. Rudolph, S. Hertenberger, S. Bolte, W. Paosangthong, D. Spirkoska, M. Doblinger, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmuller, Direct observation of a noncatalytic growth regime for GaAs nanowires, Nano Lett. 11, 3848 (2011).
  • [45]
    K. Tomiokaa, K. Ikejiri, T. Tanaka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, Selective-area growth of III–V nanowires and their applications, J. Mater. Res. 26, 2127 (2011).
  • [46]
    K. Hiruma, T. Katsuyama, K. Ogawa, M. Koguchi, H. Kakibayashi, and G. P. Morgan, Quantum size microcrystals grown using organometallic vapor phase epitaxy, Appl. Phys. Lett. 59, 431 (1991).
  • [47]
    M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers, Appl. Phys. Lett. 61, 2051 (1992).
  • [48]
    M. Koguchi, H. Kakibayashi, M. Yazawa, K. Hiruma, and T. Katsuyama, Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type, Jpn. J. Appl. Phys. 31, 2061 (1992).
  • [49]
    K. Hiruma, M. Yazawa, K. Haraguchi, K. Ogawa, T. Katsuyama, M. Koguchi, and H. Kakibayashi, GaAs freestanding quantum-size wires, J. Appl. Phys. 74, 3162 (1993).
  • [50]
    K. A. Dick, P. Caroff, J. Bolinsson, M. E. Messing, J. Johansson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Control of III–V nanowire crystal structure by growth parameter tuning, Semicond. Sci. Technol. 25, 024009 (2010).
  • [51]
    M. Heiss, S. Conesa-Boj, J. Ren, H.-H. Tseng, A. Gali, A. Rudolph, E. Uccelli, F. Peir, J. R. Morante, D. Schuh, E. Reiger, E. Kaxiras, J. Arbiol, and A. Fontcuberta i Morral, Direct correlation of crystal structure and optical properties in wurtzite/zinc-blende GaAs nanowire heterostructures, Phys. Rev. B 83, 045303 (2011).
  • [52]
    J. Bao, D. C. Bell, and F. Capasso, Optical properties of rotationally twinned InP nanowire heterostructures, Nano Lett. 8, 836 (2008).
  • [53]
    K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, and J. Zou, Carrier dynamics and quantum confinement in type II ZB–WZ InP nanowire homostructures, Nano Lett. 9, 648 (2009).
  • [54]
    J. Wallentin, M. Ek, L. R. Wallenberg, L. Samuelson, and M. T. Borgström, Electron trapping in InP nanowire FETs with stacking faults, Nano Lett. 12, 151 (2012).
  • [55]
    F. Glas, J. C. Harmand, and G. Patriarche, Why does wurtzite form in nanowires of III–V zinc blende semiconductors?, Phys. Rev. Lett. 9, 146101 (2007).
  • [56]
    V. G. Dubrovskii and N. V. Sibirev, Growth thermodynamics of nanowires and its application to polytypism of zinc blende III–V nanowires, Phys. Rev. B 77, 035414 (2008).
  • [57]
    V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, and F. Glas, Growth kinetics and crystal structure of semiconductor nanowires, Phys. Rev. B 78, 235301 (2008).
  • [58]
    N. V. Sibirev, M. A. Timofeeva, A. D. Bolshakov, M. V. Nazarenko, and V. G. Dubrovskii, Surface energy and crystal structure of nanowhiskers of III–V semiconductor compounds, Phys. Solid State 52, 1531 (2010).
  • [59]
    M. V. Nazarenko, N. V. Sibirev, and V. G. Dubrovskii, Self-Consistent Model of nanowire growth and crystal structure with regard to the adatom diffusion source, Tech. Phys. 56, 311 (2011).
  • [60]
    X. Ren, H. Huang, V. G. Dubrovskii, N. V. Sibirev, M. V. Nazarenko, A. D. Bolshakov, X. Ye, Q. Wang, Y. Huang, X. Zhang, J. Guo, and X. Liu, Experimental and theoretical investigations on the phase purity of GaAs zincblende nanowires, Semicond. Sci. Technol. 26, 014034 (2011).
  • [61]
    R. E. Algra, M. A. Verheijen, L.-F. Feiner, G. G. W. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, The role of surface energies and chemical potential during nanowire growth, Nano Lett. 11, 1259 (2011).
  • [62]
    M. C. Plante and R. R. LaPierre, Control of GaAs nanowire morphology and crystal structure, Nanotechnology 19, 495603 (2008).
  • [63]
    J. H. Kang, Q. Gao, P. Parkinson, H. J. Joyce, H. H. Tan, Y. Kim, Y. Guo, H. Xu, J. Zou, and C. Jagadish, Precursor flow rate manipulation for the controlled fabrication of twin-free GaAs nanowires on silicon substrates, Nanotechnology 23, 415702 (2012).
  • [64]
    H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters, Nano Lett. 10, 908 (2010).
  • [65]
    Y. Kitauchi, Y. Kobayashi, K. Tomioka, S. Hara, K. Hiruma, T. Fukui, and J. Motohisa, Structural transition in indium phosphide nanowires, Nano Lett. 10, 1699 (2010).
  • [66]
    H. Yoshida, K. Ikejiri, T. Sato, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, Analysis of twin defects in GaAs nanowires and tetrahedral and their correlation to GaAs (111)B surface reconstructions in selective-area metalorganic vapour-phase epitaxy, J. Cryst. Growth 312, 52 (2009).
  • [67]
    V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand, and P. Werner, New mode of vapor–liquid–solid nanowire growth, Nano Lett. 11, 1247 (2011).
  • [68]
    P. Krogstrup, S. Curiotto, E. Johnson, M. Aagesen, J. Nygard, and D. Chatain, Impact of the liquid phase shape on the structure of III–V nanowires, Phys. Rev. Lett. 106, 125505 (2011).
  • [69]
    P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111), Nano Lett. 10, 4475 (2010).
  • [70]
    G. E. Cirlin, V. G. Dubrovskii, Y. B. Samsonenko, A. D. Bouravleuv, K. Durose, Y. Y. Proskuryakov, B. Mendes, L. Bowen, M. A. Kaliteevski, R. A. Abram, and D. Zeze, Self-catalyzed and pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy, Phys. Rev. B 82, 035302 (2010).
  • [71]
    C. Panse, D. Kriegner, and F. Bechstedt, Polytypism of GaAs, InP, InAs and InSb: An ab initio study, Phys. Rev. B 84, 075217 (2011).
  • [72]
    J. Johansson, J. Bolinsson, M. Ek, P. Caroff, and K. A. Dick, Combinatorial approaches to understanding polytypism in III–V nanowires, ACS Nano 6, 6142 (2012).
  • [73]
    S. A. Fortuna and X. Li, Metal-catalyzed semiconductor nanowires: a review on the control of growth directions, Semicond. Sci. Technol. 25, 024005 (2010).
  • [74]
    K. Ikejiri, F. Ishizaka, K. Tomioka, and T. Fukui, Bidirectional growth of indium phosphide nanowires, Nano Lett. 12, 4770 (2012).
  • [75]
    S. T. Boles, C. V. Thompson, and E. A. Fitzgerald, Influence of indium and phosphine on Au-catalyzed InP nanowire growth on Si substrates, J. Cryst. Growth 311, 1446 (2009).
  • [76]
    X.-Y. Bao, C. Soci, D. Susac, J. Bratvold, D. P. R. Aplin, W. Wei, C.-Y. Chen, S. A. Dayeh, K. L. Kavanagh, and D. Wang, Heteroepitaxial growth of vertical GaAs nanowires on Si(111) substrates by metal-organic chemical vapor deposition, Nano Lett. 8, 3755 (2008).
  • [77]
    M. Mattila, T. Hakkarainen, H. Jiang, E. I. Kauppinen, and H. Lipsanen, Effect of substrate orientation on the catalyst-free growth of InP nanowires, Nanotechnology 18, 155301 (2007).
  • [78]
    K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, Control of InAs nanowire growth directions on Si, Nano Lett. 8, 3475 (2008).
  • [79]
    J. H. Kang, Q. Gao, H. J. Joyce, H. H. Tan, C. Jagadish, Y. Kim, D. Y. Choi, Y. Guo, H. Xu, J. Zou, M. A. Fickenscher, L. M. Smith, H. E. Jackson, and J. M. Yarrison-Rice, Novel growth and properties of GaAs nanowires on Si substrates, Nanotechnology 21, 035604 (2010).
  • [80]
    U. Krishnamachari, M. Borgstrom, B. J. Ohlsson, N. Panev, L. Samuelson, W. Seifert, M. W. Larsson, and L. R. Wallenberg, Defect-free InP nanowires grown in [001] direction on InP(001), Appl. Phys. Lett. 85, 2077 (2004).
  • [81]
    E. Uccelli, J. Arbiol, C. Magen, P. Krogstrup, E. Russo-Averchi, M. Heiss, G. Mugny, F. Morier-Genoud, J. Nygard, J. R. Morante, and A. Fontcuberta i Morral, Three-dimensional multiple-order twinning of self-catalyzed GaAs nanowires on Si substrates, Nano Lett. 11, 3827 (2011).
  • [82]
    E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygard, C. Magen, J. R. Morante, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, Suppression of three dimensional twinning for a 100% yield of vertical GaAs nanowires on silicon, Nanoscale 4, 1486 (2012).
  • [83]
    H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. Guo, and J. Zou, Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process, Nano Lett. 7, 921 (2007).
  • [84]
    M. T. Borgstrom, J. Wallentin, J. Tragardh, P. Ramvall, M. Ek, L. R. Wallenberg, L. Samuelson, and K. Deppert, In situ etching for total control over axial and radial nanowire growth, Nano Res. 3, 264 (2010).
  • [85]
    S. L. Diedenhofen, G. Grzela, E. Haverkamp, G. Bauhuis, J. Schermer, and J. G. Rivas, Broadband and omnidirectional anti-reflection layer for III/V multi-junction solar cells, Sol. Energy Mater. Sol. Cells 101, 308 (2012).
  • [86]
    S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods, Adv. Mater. 21, 973 (2009).
  • [87]
    J. Zhu, Z. Yu, S. Fan, and Y. Cui, Nanostructured photon management for high performance solar cells, Mater. Sci. Eng. R 70, 330 (2010).
  • [88]
    S. Jeong, S. Wang, and Yi Cui, Nanoscale photon management in silicon solar cells, J. Vac. Sci. Technol. A 30, 060801 (2012).
  • [89]
    L. Tsakalakos, J. Balch, J. Fronheiser, M. Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. Sulima, J. Rand, A. Davuluru, and U. Rapol, Strong broadband optical absorption in silicon nanowire films, J. Nanophoton. 1, 013552 (2007).
  • [90]
    W. Q. Xie, J. I. Oh, and W. Z. Shen, Realization of effective light trapping and omnidirectional antireflection in smooth surface silicon nanowire arrays, Nanotechnology 22, 065704 (2011).
  • [91]
    A. Convertino, M. Cuscuna, and F. Martelli, Optical reflectivity from highly disordered Si nanowire films, Nanotechnology 21, 355701 (2010).
  • [92]
    J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays, Nano Lett. 9, 279 (2009).
  • [93]
    S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, Excellent antireflection properties of vertical silicon nanowire arrays, Sol. Energy Mater. Sol. Cells 94, 1506 (2010).
  • [94]
    X. Li, J. Li, T. Chen, B. K. Tay, J. Wang, and H. Yu, Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications, Nanoscale Res. Lett. 5, 1721 (2010).
  • [95]
    E. Garnett and P. Yang, Light trapping in silicon nanowire solar cells, Nano Lett. 10, 1082 (2010).
  • [96]
    Z. Xiong, F. Zhao, J. Yang, and X. Hu, Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications, Appl. Phys. Lett. 96, 181903 (2010).
  • [97]
    L. Hu and G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications, Nano Lett. 7, 3249 (2007).
  • [98]
    J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, Si nanopillar array optimization on Si thin films for solar energy harvesting, Appl. Phys. Lett. 95, 033102 (2009).
  • [99]
    J. Li, H. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, Design guidelines of periodic Si nanowire arrays for solar cell application, Appl. Phys. Lett. 95, 243113 (2009).
  • [100]
    C. Lin and M. L. Povinelli, Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications, Opt. Express 17, 19371 (2009).
  • [101]
    Z. Y. Fan, R. Kapadia, P. W. Leu, X. B. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, Ordered arrays of dual-diameter nanopillars for maximized optical absorption, Nano Lett. 10, 3823 (2010).
  • [102]
    S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods, Adv. Mater. 21, 973 (2009).
  • [103]
    O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. A. M. Bakkers, and A. Lagendijk, Design of light scattering in nanowire materials for photovoltaic applications, Nano Lett. 8, 2638 (2008).
  • [104]
    N. Anttu and H. Q. Xu, Coupling of light into nanowire arrays and subsequent absorption, J. Nanosci. Nanotechnol. 10, 7183 (2010).
  • [105]
    J. Kupec, R. L. Stoop, and B. Witzigmann, Light absorption and emission in nanowire array solar cells, Opt. Express 18, 27589 (2010).
  • [106]
    J. Kupec and B. Witzigmann, Dispersion, wave propagation and efficiency analysis of nanowire solar cells, Opt. Express 17, 10399 (2009).
  • [107]
    Y. Hu, M. Li, J.-J. He, and R. R. LaPierre, Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell, Nanotechnology 24, 065402 (2013).
  • [108]
    Y. Hu, R. R. LaPierre, M. Li, K. Chen, and J.-J. He, Optical characteristics of GaAs nanowire solar cells, J. Appl. Phys. 112, 104311 (2012).
  • [109]
    L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cell, Appl. Phys. Lett. 99, 143116 (2011).
  • [110]
    J. Motohisa and K. Hiruma, Light absorption in semiconductor nanowire arrays with multijunction cell structures, Jpn. J. Appl. Phys. 51, 11PE07 (2012).
  • [111]
    M. Heiss and A. Fontcuberta i Morral, Fundamental limits in the external quantum efficiency of single nanowire, Appl. Phys. Lett. 99, 263102 (2011).
  • [112]
    L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, Engineering light absorption in semiconductor nanowire devices, Nature Mater. 8, 643 (2009).
  • [113]
    X. Li and Y. Zhan, Enhanced external quantum efficiency in rectangular single nanowire solar cells, Appl. Phys. Lett. 102, 021101 (2013).
  • [114]
    C. Colombo, P. Krogstrup, J. Nygård, M. L. Brongersma, and A. Fontcuberta i Morral, Engineering light absorption in single-nanowire solar cells with metal nanoparticles, New J. Phys. 13, 123026 (2011).
  • [115]
    P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, Single nanowire solar cells beyond the Shockley-Queisser limit, Nature Photon. 7, 306 (2013).
  • [116]
    B. M. Kayes, H. A. Atwater, and N. S. Lewis, Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells, J. Appl. Phys. 97, 114302 (2005).
  • [117]
    R. R. LaPierre, Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells, J. Appl. Phys. 109, 034311 (2011).
  • [118]
    R. R. LaPierre, Theoretical conversion efficiency of a two-junction nanowire on Si solar cell, J. Appl. Phys. 110, 014310 (2011).
  • [119]
    T. E. Trammell, X. Zhang, Y. Li, L.-Q. Chen, and E. C. Dickey, Equilibrium strain-energy analysis of coherently strained core–shell nanowires, J. Cryst. Growth 310, 3084 (2008).
  • [120]
    S. Raychaudhuri and E. T. Yu, Critical dimensions in coherently strained coaxial nanowire heterostructures, J. Appl. Phys. 99, 114308 (2006).
  • [121]
    K. L. Kavanagh, I. Saveliev, M. Blumin, G. Swadener, and H. E. Ruda, Faster radial strain relaxation in InAs–GaAs core–shell heterowires, J. Appl. Phys. 111, 044301 (2012).
  • [122]
    S. Raychaudhuri and E. T. Yu, Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures, J. Vac. Sci. Technol. B 24, 2053 (2006).
  • [123]
    M. Y. Gutkin, K. V. Kuzmin, and A. G. Sheinerman, Misfit stresses and relaxation mechanisms in a nanowire containing a coaxial cylindrical inclusion of finite height, Phys. Status Solidi B 248, 1651 (2011).
  • [124]
    Q. H. Fang, H. P. Song, and Y. W. Liu, Misfit dislocations in an annular film grown on a cylindrical nanowire with different elastic constants, Physica B 404, 1897 (2009).
  • [125]
    C. M. Haapamaki, R. R. LaPierre, and J. Baugh, Critical shell thickness for InAs–AlxIn1–xAs(P) core–shell nanowires, J. Appl. Phys. 112, 124305 (2012).
  • [126]
    G. E. Cirlin, V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, Y. B. Samsonenko, A. D. Bouravleuv, J. C. Harmand, and F. Glas, Critical diameters and temperature domains for MBE growth of III–V nanowires on lattice mismatched substrates, Phys. Status Solidi RRL 3, 112 (2009).
  • [127]
    E. Ertekin, P. A. Greaney, D. C. Chrzan, and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures, J. Appl. Phys. 97, 114325 (2005).
  • [128]
    H. Ye, P. Lu, Z. Yu, Y. Song, D. Wang, and S. Wang, Critical Thickness and Radius for Axial Heterostructure Nanowires Using Finite-Element Method, Nano Lett. 9, 1921 (2009).
  • [129]
    G. Kastnery and U. Gosele, Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire, Philos. Mag. 84, 3803 (2004).
  • [130]
    F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires, Phys. Rev. B 74, 121302 (2006).
  • [131]
    K. L. Kavanagh, Misfit dislocations in nanowire heterostructures, Semicond. Sci. Technol. 25, 024006 (2010).
  • [132]
    H. Park, R. Beresford, S. Hong, and J. Xu, Geometry- and size-dependence of electrical properties of metal contacts on semiconducting nanowires, J. Appl. Phys. 108, 094308 (2010).
  • [133]
    H. Ruda and A. Shik, Influence of contacts on the conductivity of thin wires, J. Appl. Phys. 84, 5867 (1998).
  • [134]
    F. Leonard and A. A. Talin, Size-dependent effects on electrical contacts to nanotubes and nanowires, Phys. Rev. Lett. 97, 026804 (2006).
  • [135]
    J. Hu, Y. Liu, C. Z. Ning, R. Dutton, and S.-M. Kang, Fringing field effects on electrical resistivity of semiconductor nanowire-metal contacts, Appl. Phys. Lett. 92, 083503 (2008).
  • [136]
    F. Leonard and A. A. Talin, Electrical contacts to one- and two-dimensional nanomaterials, Nature Nanotechnol. 6, 773 (2011).
  • [137]
    O. Salehzadeh, M. X. Chen, K. L. Kavanagh, and S. P. Watkins, Rectifying characteristics of Te-doped GaAs nanowires, Appl. Phys. Lett. 99, 182102 (2011).
  • [138]
    A. C. E. Chia and R. R. LaPierre, Contact planarization of ensemble nanowires, Nanotechnology 22, 245304 (2011).
  • [139]
    E. Havard, T. Camps, V. Bardinal, L. Salvagnac, C. Armand, C. Fontaine, and S. Pinaud, Effect of thermal annealing on the electrical properties of indium tin oxide (ITO) contact on Be-doped GaAs for optoelectronic applications, Semicond. Sci. Technol. 23, 035001 (2008).
  • [140]
    V. L. Rideout, A review of the theory and technology for Ohmic contacts to group III–V compound semiconductors, Solid-State Electron. 18, 541 (1975).
  • [141]
    M. Heurlin, P. Wickert, S. Falt, M. T. Borgstrom, K. Deppert, L. Samuelson, and M. H. Magnusson, Axial InP nanowire tandem junction grown on a silicon substrate, Nano Lett. 11, 2028 (2011).
  • [142]
    A. Pfund, I. Shorubalko, R. Leturcq, M. T. Borgström, F. Gramm, E. Müller, and K. Ensslin, Fabrication of semiconductor nanowires for electronic transport measurements, Chimia A 726, 729 (2006).
  • [143]
    D. B. Suyatin, C. Thelander, M. T. Bjork, I. Maximov, and L. Samuelson, Sulfur passivation for Ohmic contact formation to InAs nanowires, Nanotechnology 18, 105307 (2007).
  • [144]
    M. Scheffler, S. Nadj-Perge, L. P. Kouwenhoven, M. T. Borgström, and E. P. A. M. Bakkers, Diameter-dependent conductance of InAs nanowires, J. Appl. Phys. 106, 124303 (2009).
  • [145]
    A. C. E. Chia and R. R. LaPierre, Analytical model of surface depletion in GaAs nanowires, J. Appl. Phys. 112, 063705 (2012).
  • [146]
    H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. Hoe Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, Ultralow surface recombination velocity in InP nanowires probed by Terahertz spectroscopy, Nano Lett. 12, 5325 (2012).
  • [147]
    V. N. Bessolov and M. V. Lebedev, Chalcogenide passivation of III–V semiconductor surfaces, Semiconductors 32, 1141 (1998).
  • [148]
    N. Tajik, Z. Peng, P. Kuyanov, and R. R. LaPierre, Sulfur passivation and contact methods in GaAs nanowire solar cells, Nanotechnology 22, 225402 (2011).
  • [149]
    N. Tajik, A. C. E. Chia, and R. R. LaPierre, Improved conductivity and long-term stability of sulfur-passivated n-GaAs nanowires, Appl. Phys. Lett. 100, 203122 (2012).
  • [150]
    O. Demichel, M. Heiss, J. Bleuse, H. Mariette, and A. Fontcuberta i Morral, Impact of surfaces on the optical properties of GaAs nanowires, Appl. Phys. Lett. 97, 201907 (2010).
  • [151]
    P. Parkinson, H. J. Joyce, Q. Gao, H. H. Tan, X. Zhang, J. Zou, C. Jagadish, L. M. Herz, and M. B. Johnston, Carrier lifetime and mobility enhancement in nearly defect-free core–shell nanowires measured using time-resolved Terahertz spectroscopy, Nano Lett. 9, 3349 (2009).
  • [152]
    M. Moewe, L. C. Chuang, S. Crankshaw, C. Chase, and C. Chang-Hasnain, Atomically sharp catalyst-free wurtzite GaAs/AlGaAs nanoneedles grown on silicon, Appl. Phys. Lett. 93, 023116 (2008).
  • [153]
    L. V. Titova, T. B. Hoang, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, H. J. Joyce, H. H. Tan, and C. Jagadish, Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires, Appl. Phys. Lett. 89, 173126 (2006).
  • [154]
    A. C. E. Chia, M. Tirado, Y. Li, S. Zhao, Z. Mi, D. Comedi, and R. R. LaPierre, Electrical transport and optical model of GaAs–AlInP core–shell nanowires, J. Appl. Phys. 111, 094319 (2012).
  • [155]
    G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, GaAs nanopillar-array solar cells employing in situ surface passivation, Nature Commun. 4, 1497 (2013).
  • [156]
    A. R. Clawson, Guide to references on III–V semiconductor chemical etching, Mater. Sci. Eng. 31, 1 (2001).
  • [157]
    M. Hilse, M. Ramsteiner, S. Breuer, L. Geelhaar, and H. Riechert, Incorporation of the dopants Si and Be into GaAs nanowires, Appl. Phys. Lett. 96, 193104 (2010).
  • [158]
    L. Rigutti, A. De Luna Bugallo, M. Tchernycheva, G. Jacopin, F. H. Julien, G. Cirlin, G. Patriarche, D. Lucot, L. Travers, and J.-C. Harmand, Si incorporation in InP nanowires grown by Au-assisted molecular beam epitaxy, J. Nanomaterials 2009, 435451 (2009).
  • [159]
    J. Dufouleur, C. Colombo, T. Garma, B. Ketterer, E. Uccelli, M. Nicotra, and A. Fontcuberta i Morral, P-doping mechanisms in catalyst-free gallium arsenide nanowires, Nano Lett. 10, 1734 (2010).
  • [160]
    A. Casadei, P. Krogstrup, M. Heiss, J. A. Rohr, C. Colombo, T. Ruelle, S. Upadhyay, C. B. Sorensen, J. Nygard, and A. Fontcuberta i Morral, Doping incorporation paths in catalyst-free Be-doped GaAs nanowires, Appl. Phys. Lett. 102, 013117 (2013).
  • [161]
    E. A. Rienk, M. A. Verheijen, M. T. Borgstrom, L.-F. Feiner, G. Immink, W. J. P. van Enckevort, E. Vlieg, and E. P. A. M. Bakkers, Twinning superlattices in indium phosphide nanowires, Nature 456, 369 (2008).
  • [162]
    J. Wallentin, M. Ek, L. R. Wallenberg, L. Samuelson, K. Deppert, and M. T. Borgstrom, Changes in contact angle of seed particle correlated with increased zincblende formation in doped InP nanowires, Nano Lett. 10, 4807 (2010).
  • [163]
    R. J. Yee, S. J. Gibson, V. G. Dubrovskii, and R. R. LaPierre, Effect of Be doping on InP nanowire growth mechanisms, Appl. Phys. Lett. 101, 263106 (2012).
  • [164]
    J. Wallentin, L. B. Poncela, A. M. Jansson, K. Mergenthaler, M. Ek, D. Jacobsson, L. R. Wallenberg, K. Deppert, L. Samuelson, D. Hessman, and M. T. Borgstrom, Single GaInP nanowire p–i–n junctions near the direct to indirect bandgap crossover point, Appl. Phys. Lett. 100, 251103 (2012).
  • [165]
    J. Wallentin and M. T. Borgström, Doping of semiconductor nanowires, J. Mater. Res. 26, 2142 (2011).
  • [166]
    A. C. E. Chia and R. R. LaPierre, Unlocking doping and compositional profiles of nanowire ensembles using SIMS, Nanotechnology 24, 045701 (2013).
  • [167]
    K. Storm, F. Halvardsson, M. Heurlin, D. Lindgren, A. Gustafsson, P. M. Wu, B. Monemar, and L. Samuelson, Spatially resolved Hall effect measurement in a single semiconductor nanowire, Nature Nanotechnol. 7, 718 (2012).
  • [168]
    Ch. Blömers, T. Grap, M. I. Lepsa, J. Moers, St. Trellenkamp, D. Grützmacher, H. Lüth, and T. Schäpers, Hall effect measurements on InAs nanowires, Appl. Phys. Lett. 101, 152106 (2012).
  • [169]
    D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire, Nature Nanotechnol. 4, 315 (2009).
  • [170]
    J. D. Christesen, X. Zhang, C. W. Pinion, T. A. Celano, C. J. Flynn, and J. F. Cahoon, Design principles for photovoltaic devices based on Si nanowires with axial or radial p–n junctions, Nano Lett. 12, 6024 (2012).
  • [171]
    A. Kandala, T. Betti, and A. Fontcuberta i Morral, General theoretical considerations on nanowire solar cell designs, Phys. Status Solidi A 206, 173 (2009).
  • [172]
    A. D. Mallorquı, F. M. Epple, D. Fan, O. Demichel, and A. Fontcuberta i Morral, Effect of the pn junction engineering on Si microwire-array solar cells, Phys. Status Solidi A 209, 1588 (2012).
  • [173]
    S. Bu, X. Li, L. Wen, X. Zeng, Y. Zhao, W. Wang, and Y. Wang, Optical and electrical simulations of two-junction III–V nanowires on Si solar cell, Appl. Phys. Lett. 102, 031106 (2013).
  • [174]
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys. 89, 5815 (2001).
  • [175]
    T. Mårtensson, C. P. T. Svensson, B. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, Epitaxial III–V nanowires on silicon, Nano Lett. 4, 1987 (2004).
  • [176]
    P. K. Mohseni, C. Maunders, G. A. Botton, and R. R. LaPierre, GaP/GaAsP/GaP core-multishell nanowire heterostructures on (111) silicon, Nanotechnology 18, 445304 (2007).
  • [177]
    P. K. Mohseni, A. D. Rodrigues, J. C. Galzerani, Y. A. Pusep, and R. R. LaPierre, Structural and optical analysis of GaAsP/GaP core-shell nanowires, J. Appl. Phys. 106, 124306 (2009).
  • [178]
    A. Fakhr, Y. M. Haddara, and R. R. LaPierre, Dependence of InGaP nanowire morphology and structure on molecular beam epitaxy growth conditions, Nanotechnology 21, 165601 (2010).
  • [179]
    D. Jacobsson, J. M. Persson, D. Kriegner, T. Etzelstorfer, J. Wallentin, J. B. Wagner, J. Stangl, L. Samuelson, K. Deppert, and M. T. Borgstrom, Particle-assisted GaxIn1–xP nanowire growth for designed bandgap structures, Nanotechnology 23, 245601 (2012).
  • [180]
    J. Wallentin, L. B. Poncela, A. M. Jansson, K. Mergenthaler, M. Ek, D. Jacobsson, L. R. Wallenberg, K. Deppert, L. Samuelson, D. Hessman, and M. T. Borgstrom, Single GaInP nanowire p–i–n junctions near the direct to indirect bandgap crossover point, Appl. Phys. Lett. 100, 251103 (2012).
  • [181]
    M. Tchernycheva, L. Rigutti, G. Jacopin, A. de Luna Bugallo, P. Lavenus, F. H. Julien, M. Timofeeva, A. D. Bouravleuv, G. E. Cirlin, V. Dhaka, H. Lipsanen, and L. Largeau, Photovoltaic properties of GaAsP core–shell nanowires on Si(001) substrate, Nanotechnology 23, 265402 (2012).
  • [182]
    Y. Hu, M. Li, J.-J. He, and R. R. LaPierre, Current matching and efficiency optimization in a two-junction nanowire-on-silicon solar cell, Nanotechnology 24, 065402 (2013).
  • [183]
    J. Wallentin, J. M. Persson, J. B. Wagner, L. Samuelson, K. Deppert, and M. T. Borgstrom, High-performance single nanowire tunnel diodes, Nano Lett. 10, 974 (2010).
  • [184]
    B. M. Borg, K. A. Dick, B. Ganjipour, M.-E. Pistol, L.-E. Wernersson, and C. Thelander, InAs/GaSb heterostructure nanowires for tunnel field-effect transistors, Nano Lett. 10, 4080 (2010).
  • [185]
    B. Ganjipour, A. W. Dey, B. M. Borg, M. Ek, M.-E. Pistol, K. A. Dick, L.-E. Wernersson, and C. Thelander, High current density Esaki tunnel diodes based on GaSb–InAsSb heterostructure nanowires, Nano Lett. 11, 4222 (2011).
  • [186]
    J. Yang, J. Goguen, and R. Kleiman, Silicon solar cell with integrated tunnel junction for multi-junction photovoltaic applications, IEEE Electron Device Lett. 33, 1732 (2012).
  • [187]
    L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. Huang, and Y. Wang, Theoretical consideration of III–V nanowire/Si triple-junction solar cells, Nanotechnology 23, 505202 (2012).
  • [188]
    K. A. Dick, K. Deppert, L. S. Karlsson, L. R. Wallenberg, L. Samuelson, and W. Seifert, A new understanding of Au-assisted growth of III–V semiconductor nanowires, Adv. Funct. Mater. 15, 1603 (2005).
  • [189]
    K. A. Dick, S. Kodambaka, M. C. Reuter, K. Deppert, L. Samuelson, W. Seifert, L. R. Wallenberg, and F. M. Ross, The morphology of axial and branched nanowire heterostructures, Nano Lett. 7, 1817 (2007).
  • [190]
    K. A. Dick, J. Bolinsson, B. M. Borg, and J. Johansson, Controlling the abruptness of axial heterojunctions in III–V nanowires: Beyond the reservoir effect, Nano Lett. 12, 3200 (2012).
  • [191]
    J. A. Czaban, D. A. Thompson, and R. R. LaPierre, GaAs core–shell nanowires for photovoltaic applications, Nano Lett. 9, 148 (2009).
  • [192]
    H. Bi and R. R. LaPierre, A GaAs nanowire-P3HT hybrid photovoltaic device, Nanotechnology 20, 465205 (2009).
  • [193]
    G. Mariani, R. B. Laghumavarapu, B. Tremolet de Villers, J. Shapiro, P. Senanayake, A. Lin, B. J. Schwartz, and D. L. Huffaker, Hybrid conjugated polymer solar cells using patterned GaAs nanopillars, Appl. Phys. Lett. 97, 013107 (2010).
  • [194]
    G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Yu. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate, Nanoscale Res. Lett. 5, 360 (2010).
  • [195]
    G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Leonard, J. Shapiro, and D. L. Huffaker, Patterned radial GaAs nanopillar solar cells, Nano Lett. 11, 2490 (2011).
  • [196]
    N. Han, F. Wang, S. Yip, J. J. Hou, F. Xiu, X. Shi, A. T. Hui, T. Hung, and J. C. Ho, GaAs nanowire Schottky barrier photovoltaics utilizing Au–Ga alloy catalytic tips, Appl. Phys. Lett. 101, 013105 (2012).
  • [197]
    C. Colombo, M. Heiss, M. Gratzel, and A. Fontcuberta i Morral, Gallium arsenide p–i–n radial structures for photovoltaic applications, Appl. Phys. Lett. 94, 173108 (2009).
  • [198]
    J.-J. Chao, S.-C. Shiu, and C.-F. Lin, GaAs nanowire/poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer, Sol. Energy Mater. Sol. Cells 105, 40 (2012).
  • [199]
    W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection, Nano Lett. 9, 2926 (2009).
  • [200]
    C. J. Novotny, E. T. Yu, and P. K. L. Yu, InP nanowire/polymer hybrid photodiode, Nano Lett. 8, 775 (2008).
  • [201]
    H. Goto, K. Nosaki, K. Tomioka, S. Hara, K. Hiruma, J. Motohisa, and T. Fukui, Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy, Appl. Phys. Express 2, 035004 (2009).
  • [202]
    J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit, Science 339, 1057 (2013).
  • [203]
    H. Pham, T. Nguyen, Y.-L. Chang, I. Shih, and Z. Mi, InN p–i–n nanowire solar cells on Si, IEEE J. Sel. Top. Quantum Electron. 17, 1062 (2011).
  • [204]
    Y. B. Tang, Z. H. Chen, H. S. Song, C. S. Lee, H. T. Cong, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, Vertically aligned p-type single-crystalline GaN nanorod arrays on n-Type Si for heterojunction photovoltaic cells, Nano Lett. 8, 4191 (2008).
  • [205]
    Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, Coaxial group III-nitride nanowire photovoltaics, Nano Lett. 9, 2183 (2009).
  • [206]
    J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, InxGa1–xAs nanowires on silicon: One-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics, Nano Lett. 11, 4831 (2011).
  • [207]
    C. Gutsche, A. Lysov, D. Braam, I. Regolin, G. Keller, Z.-A. Li, M. Geller, M. Spasova, W. Prost, and F.-J. Tegude, n-GaAs/InGaP/p-GaAs core-multishell nanowire diodes for efficient light-to-current conversion, Adv. Funct. Mater. 22, 929 (2012).
  • [208]
    M. Tchernycheva, L. Rigutti, G. Jacopin, A. de Luna Bugallo, P. Lavenus, F. H. Julien, M. Timofeeva, A. D. Bouravleuv, G. E. Cirlin, V. Dhaka, H. Lipsanen, and L. Largeau, Photovoltaic properties of GaAsP core–shell nanowires on Si(001) substrate, Nanotechnology 23, 265402 (2012).
  • [209]
    J. V. Holm, H. I. Jørgensen, P. Krogstrup, J. Nygård, H. Liu, and M. Aagesen, Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon, Nature Commun. 4, 1498 (2013).
  • [210]
    T. J. Kempa, B. Tian, D. R. Kim, J. Hu, X. Zheng, and C. M. Lieber, Single and tandem axial p–i–n nanowire photovoltaic devices, Nano Lett. 8, 3456 (2008).
  • [211]
    P. K. Mohseni, A. Behnam, J. D. Wood, C. D. English, J. W. Lyding, E. Pop, and X. Li, InxGa1–xAs nanowire growth on graphene: van der Waals epitaxy induced phase segregation, Nano Lett. (2013) Article ASAP.
  • [212]
    A. M. Munshi, D. L. Dheeraj, V. T. Fauske, D.-C. Kim, A. T. J. van Helvoort, B.-O. Fimland, and H. Weman, Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth, Nano Lett. 12, 4570 (2012).
  • [213]
    P. K. Mohseni, G. Lawson, A. Adronov, and R. R. LaPierre, Hybrid GaAs nanowire-carbon nanotube flexible photovoltaics, IEEE J. Sel. Top. Quantum Electron. 17, 1070 (2011).
  • [214]
    P. K. Mohseni, G. Lawson, C. Couteau, G. Weihs, A. Adronov, and R. R. LaPierre, Growth and characterization of GaAs nanowires on carbon nanotube composite films: towards flexible nano-devices, Nano Lett. 8, 4075 (2008).
  • [215]
    Y. J. Hong, W. H. Lee, Y. Wu, R. S. Ruoff, and T. Fukui, van der Waals epitaxy of InAs nanowires vertically aligned on single-layer graphene, Nano Lett. 12, 1431 (2012).
  • [216]
    J. M. Spurgeon, S. W. Boettcher, M. D. Kelzenberg, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, Flexible, polymer-supported, Si wire array photoelectrodes, Adv. Mater. 22, 3277 (2010).
  • [217]
    Y. G. Sun and J. A. Rogers, Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates, Nano Lett. 4, 1953 (2004).
  • [218]
    A. J. Standing, S. Assali, J. E. M. Haverkort, and E. P. A. M. Bakkers, High yield transfer of ordered nanowire arrays into transparent flexible polymer films, Nanotechnology 23, 495305 (2012).
  • [219]
    M. Heurlin, M. H. Magnusson, D. Lindgren, M. Ek, L. R. Wallenberg, K. Deppert, and L. Samuelson, Continuous gas-phase synthesis of nanowires with tunable properties, Nature 492, 90 (2013).