SEARCH

SEARCH BY CITATION

References

  • [1]
    P. Yang, R. Yan, and M. Fardy, Semiconductor nanowire: what's next?, Nano Lett. 10, 1529 (2010).
  • [2]
    T. J. Kempa, R. W. Day, S.-K. Kim, H.-G. Park, and C. M. Lieber, Semiconductor nanowires: a platform for exploring limits and concepts for nano-enabled solar cells, Energy Environ. Sci. 6, 719 (2013).
  • [3]
    R. Agarwal and C. M. Lieber, Semiconductor nanowires: optics and optoelectronics, Appl. Phys. A, Mater. Sci. Proc. 85, 209 (2006).
  • [4]
    C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gösele, and L. Samuelson, Nanowire-based one-dimensional electronics, Mater. Today 9, 28 (2006).
  • [5]
    R. Yan, D. Gargas, and P. Yang, Nanowire photonics, Nature Photon. 3, 569 (2009).
  • [6]
    P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygård, and A. Fontcuberta i Morral, Single-nanowire solar cells beyond the Shockley–Queisser limit, Nature Photon. 7, 306 (2013).
  • [7]
    B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature 449, 885 (2007).
  • [8]
    J. A. Czaban, D. A. Thompson, and R. R. LaPierre, GaAs core–shell nanowires for photovoltaic applications, Nano Lett. 9, 148 (2009).
  • [9]
    J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit, Science 339, 1057 (2013).
  • [10]
    E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, Nanowire solar cells, Annu. Rev. Mater. Res. 41, 269 (2011).
  • [11]
    M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, Nanowires with promise for photovoltaics, IEEE J. Sel. Top. Quantum Electron. 17, 1050 (2011).
  • [12]
    A. I. Hochbaum and P. Yang, Semiconductor nanowires for energy conversion, Chem. Rev. 110, 527 (2009).
  • [13]
    G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, GaAs nanopillar-array solar cells employing in situ surface passivation, Nature Commun. 4, 1497 (2013).
  • [14]
    J. V. Holm, H. I. Jørgensen, P. Krogstrup, J. Nygård, H. Liu, and M. Aagesen, Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon, Nature Commun. 4, 1498 (2013).
  • [15]
    W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, Catalyst-free InGaN/GaN nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy, Nano Lett. 10, 3355 (2010).
  • [16]
    M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science 292, 1897 (2001).
  • [17]
    B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, and T. Fukui, Single GaAs/GaAsP coaxial core–shell nanowire lasers, Nano Lett. 9, 112 (2009).
  • [18]
    J. C. Johnson, H. Yan, R. D. Schaller, L. H. Haber, R. J. Saykally, and P. Yang, Single nanowire lasers, J. Phys. Chem. B 105, 11387 (2001).
  • [19]
    J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, Single gallium nitride nanowire lasers, Nature Mater. 1, 106 (2002).
  • [20]
    C. P. T. Svensson, M. Thomas, T. Johanna, L. Christina, R. Michael, H. Dan, S. Lars, and O. Jonas, Monolithic GaAs/InGaP nanowire light emitting diodes on silicon, Nanotechnology 19, 305201 (2008).
  • [21]
    K. Tomioka, M. Yoshimura, and T. Fukui, A III–V nanowire channel on silicon for high-performance vertical transistors, Nature 488, 189 (2012).
  • [22]
    T. Mårtensson, C. P. T. Svensson, B. A. Wacaser, M. W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L. R. Wallenberg, and L. Samuelson, Epitaxial III–V nanowires on silicon, Nano Lett. 4, 1987 (2004).
  • [23]
    K. L. Kavanagh, Misfit dislocations in nanowire heterostructures, Semicond. Sci. Technol. 25, 024006 (2010).
  • [24]
    M. Hocevar, G. Immink, M. Verheijen, N. Akopian, V. Zwiller, L. Kouwenhoven, and E. Bakkers, Growth and optical properties of axial hybrid III–V/silicon nanowires, Nature Commun. 3, 1266 (2012).
  • [25]
    F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires, Phys. Rev. B 74, 121302 (2006).
  • [26]
    M. E. Messing, J. Wong-Leung, Z. Zanolli, H. J. Joyce, H. H. Tan, Q. Gao, L. R. Wallenberg, J. Johansson, and C. Jagadish, Growth of straight InAs-on-GaAs nanowire heterostructures, Nano Lett. 11, 3899 (2011).
  • [27]
    J. Johansson and K. A. Dick, Recent advances in semiconductor nanowire heterostructures, Cryst. Eng. Commun. 13, 7175 (2011).
  • [28]
    K. Hillerich, K. A. Dick, C.-Y. Wen, M. C. Reuter, S. Kodambaka, and F. M. Ross, Strategies to control morphology in hybrid group III–V/group IV heterostructure nanowires, Nano Lett. 13, 903 (2013).
  • [29]
    M. T. Bjork, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg, and L. Samuelson, One-dimensional heterostructures in semiconductor nanowhiskers, Appl. Phys. Lett. 80, 1058 (2002).
  • [30]
    H. Geaney, E. Mullane, Q. M. Ramasse, and K. M. Ryan, Atomically abrupt silicon–germanium axial heterostructure nanowires synthesized in a solvent vapor growth system, Nano Lett. 13, 1675 (2013).
  • [31]
    K. A. Dick, J. Bolinsson, B. M. Borg, and J. Johansson, Controlling the abruptness of axial heterojunctions in III–V nanowires: beyond the reservoir effect, Nano Lett. 12, 3200 (2012).
  • [32]
    F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nature Photon. 4, 611 (2010).
  • [33]
    K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490, 192 (2012).
  • [34]
    M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb Carbon: a review of graphene, Chem. Rev. 110, 132 (2009).
  • [35]
    P. Avouris, Graphene: electronic and photonic properties and devices, Nano Lett. 10, 4285 (2010).
  • [36]
    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8, 902 (2008).
  • [37]
    J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Two-dimensional phonon transport in supported graphene, Science 328, 213 (2010).
  • [38]
    R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320, 1308 (2008).
  • [39]
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 385 (2008).
  • [40]
    S.-H. Bae, O. Kahya, B. K. Sharma, J. Kwon, H. J. Cho, B. Özyilmaz and J.-H. Ahn, Graphene-P(VDF-TrFE) multilayer film for flexible applications, ACS Nano 7, 3130 (2013).
  • [41]
    C. Sire, F. Ardiaca, S. Lepilliet, J.-W. T. Seo, M. C. Hersam, G. Dambrine, H. Happy, and V. Derycke, Flexible gigahertz transistors derived from solution-based single-layer graphene, Nano Lett. 12, 1184 (2012).
  • [42]
    N. Savage, Come into the light, Nature 483, S38 (2012).
  • [43]
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457, 706 (2009).
  • [44]
    D. Shahrjerdi and S. W. Bedell, Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic, Nano Lett. 13, 315 (2012).
  • [45]
    J. A. Rogers, T. Someya, and Y. Huang, Materials and mechanics for stretchable electronics, Science 327, 1603 (2010).
  • [46]
    D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, Stretchable and foldable silicon integrated circuits, Science 320, 507 (2008).
  • [47]
    S. H. Chae, W. J. Yu, J. J. Bae, D. L. Duong, D. Perello, H. Y. Jeong, Q. H. Ta, T. H. Ly, Q. A. Vu, M. Yun, X. Duan, and Y. H. Lee, Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors, Nature Mater. 12, 403 (2013).
  • [48]
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324, 1312 (2009).
  • [49]
    L. Gao, J. R. Guest, and N. P. Guisinger, Epitaxial graphene on Cu(111), Nano Lett. 10, 3512 (2010).
  • [50]
    Z. Yan, J. Lin, Z. Peng, Z. Sun, Y. Zhu, L. Li, C. Xiang, E. L. Samuel, C. Kittrell, and J. M. Tour, Toward the synthesis of wafer-scale single-crystal graphene on copper foils, ACS Nano 6, 9110 (2012).
  • [51]
    R. Hawaldar, P. Merino, M. R. Correia, I. Bdikin, J. Grácio, J. Méndez, J. A. Martín-Gago, and M. K. Singh, Large-area high-throughput synthesis of monolayer graphene sheet by Hot Filament Thermal Chemical Vapor Deposition, Sci. Rep. 2, 682 (2012).
  • [52]
    S. J. Chae, F. Güneş, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, M. H. Park, C. W. Yang, D. Pribat, and Y. H. Lee, Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation, Adv. Mater. 21, 2328 (2009).
  • [53]
    A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. Dresselhaus, J. Schaefer, and J. Kong, Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces, Nano Res. 2, 509 (2009).
  • [54]
    Y. Zhang, T. Gao, S. Xie, B. Dai, L. Fu, Y. Gao, Y. Chen, M. Liu, and Z. Liu, Different growth behaviors of ambient pressure chemical vapor deposition graphene on Ni(111) and Ni films: A scanning tunneling microscopy study, Nano Res. 5, 402 (2012).
  • [55]
    L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum, Nature Commun. 3, 699 (2012).
  • [56]
    P. Sutter, J. T. Sadowski, and E. Sutter, Graphene on Pt(111): growth and substrate interaction, Phys. Rev. B 80, 245411 (2009).
  • [57]
    K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide, Nature Mater. 8, 203 (2009).
  • [58]
    C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108, 19912 (2004).
  • [59]
    M. Sprinkle, P. Soukiassian, W. A. de Heer, C. Berger, and E. H. Conrad, Epitaxial graphene: the material for graphene electronics, Phys. Status Solidi RRL 3, A91 (2009).
  • [60]
    C. Virojanadara, R. Yakimova, A. A. Zakharov, and L. I. Johansson, Large homogeneous mono-/bi-layer graphene on 6H–SiC(0001) and buffer layer elimination, J. Phys. D, Appl. Phys. 43, 374010 (2010).
  • [61]
    S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnol. 5, 574 (2010).
  • [62]
    T. Hesjedal, Continuous roll-to-roll growth of graphene films by chemical vapor deposition, Appl. Phys. Lett. 98, 133106 (2011).
  • [63]
    A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, Transferring and identification of single- and few-layer graphene on arbitrary substrates, J. Phys. Chem. C 112, 17741 (2008).
  • [64]
    X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. Hight Walker, Z. Liu, L.-M. Peng, and C. A. Richter, Toward clean and crackless transfer of graphene, ACS Nano 5, 9144 (2011).
  • [65]
    J. W. Suk, A. Kitt, C. W. Magnuson, Y. Hao, S. Ahmed, J. An, A. K. Swan, B. B. Goldberg, and R. S. Ruoff, Transfer of CVD-grown monolayer graphene onto arbitrary substrates, ACS Nano 5, 6916 (2011).
  • [66]
    J. Kang, D. Shin, S. Bae, and B. H. Hong, Graphene transfer: key for applications, Nanoscale 4, 5527 (2012).
  • [67]
    J. Gunho, C. Minhyeok, L. Sangchul, P. Woojin, K. Yung Ho, and L. Takhee, The application of graphene as electrodes in electrical and optical devices, Nanotechnology 23, 112001 (2012).
  • [68]
    Y. Liu, X. Dong, and P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev. 41, 2283 (2012).
  • [69]
    Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, Graphene based electrochemical sensors and biosensors: a review, Electroanalysis 22, 1027 (2010).
  • [70]
    Q. He, S. Wu, Z. Yin, and H. Zhang, Graphene-based electronic sensors, Chem. Sci. 3, 1764 (2012).
  • [71]
    S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, Graphene-based transparent strain sensor, Carbon 51, 236 (2013).
  • [72]
    G. Yang, C. Lee, J. Kim, F. Ren, and S. J. Pearton, Flexible graphene-based chemical sensors on paper substrates, Phys. Chem. Chem. Phys. 15, 1798 (2013).
  • [73]
    K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, and K. J. Lee, Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons, Adv. Mater. 24, 2999 (2012).
  • [74]
    M. T. Ong and E. J. Reed, Engineered piezoelectricity in graphene, ACS Nano 6, 1387 (2011).
  • [75]
    S. Chandratre and P. Sharma, Coaxing graphene to be piezoelectric, Appl. Phys. Lett. 100, 023114 (2012).
  • [76]
    Y. Zhu, Z. Sun, Z. Yan, Z. Jin, and J. M. Tour, Rational design of hybrid graphene films for high-performance transparent electrodes, ACS Nano 5, 6472 (2011).
  • [77]
    D. Anna, On display with transparent conducting films, Nanotechnology 23, 110201 (2012).
  • [78]
    K. Tae-il, K. Rak-Hwan, and J. A. Rogers, Microscale inorganic light-emitting diodes on flexible and stretchable substrates, IEEE Photon. J. 4, 607 (2012).
  • [79]
    M. He, J. Jung, F. Qiu, and Z. Lin, Graphene-based transparent flexible electrodes for polymer solar cells, J. Mater. Chem. 22, 24254 (2012).
  • [80]
    L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano 4, 2865 (2010).
  • [81]
    Z. Liu, J. Li, Z.-H. Sun, G. Tai, S.-P. Lau, and F. Yan, The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells, ACS Nano 6, 810 (2011).
  • [82]
    W. I. Park, C.-H. Lee, J. M. Lee, N.-J. Kim, and G.-C. Yi, Inorganic nanostructures grown on graphene layers, Nanoscale 3, 3522 (2011).
  • [83]
    W. Park, J. Lee, D. Lee, and G.-C. Yi, Hybrid semiconductor nanostructures with graphene layers, in: Semiconductor Nanostructures for Optoelectronic Devices, edited by G.-C. Yi (Springer, Berlin, Heidelberg, 2012), p. 167.
  • [84]
    B. J. Ohlsson, M. T. Björk, M. H. Magnusson, K. Deppert, L. Samuelson, and L. R. Wallenberg, Size-, shape-, and position-controlled GaAs nano-whiskers, Appl. Phys. Lett. 79, 3335 (2001).
  • [85]
    K. Hiruma, T. Katsuyama, K. Ogawa, M. Koguchi, H. Kakibayashi, and G. P. Morgan, Quantum size microcrystals grown using organometallic vapor phase epitaxy, Appl. Phys. Lett. 59, 431 (1991).
  • [86]
    M. Yazawa, M. Koguchi, and K. Hiruma, Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates, Appl. Phys. Lett. 58, 1080 (1991).
  • [87]
    W. Seifert, M. Borgström, K. Deppert, K. A. Dick, J. Johansson, M. W. Larsson, T. Mårtensson, N. Sköld, C. Patrik, T. Svensson, B. A. Wacaser, L. Reine Wallenberg, and L. Samuelson, Growth of one-dimensional nanostructures in MOVPE, J. Cryst. Growth 272, 211 (2004).
  • [88]
    Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, M. Paladugu, J. Zou, and A. A. Suvorova, Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires, Nano Lett. 6, 599 (2006).
  • [89]
    S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradečak, Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition, Nano Lett. 8, 1386 (2008).
  • [90]
    R. S. Wagner and W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett. 4, 89 (1964).
  • [91]
    E. I. Givargizov, Fundamental aspects of VLS growth, J. Cryst. Growth 31, 20 (1975).
  • [92]
    J. C. Harmand, G. Patriarche, N. Pere-Laperne, M. N. Merat-Combes, L. Travers, and F. Glas, Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth, Appl. Phys. Lett. 87, 203101 (2005).
  • [93]
    M. C. Plante and R. R. LaPierre, Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy, J. Cryst. Growth 286, 394 (2006).
  • [94]
    D. L. Dheeraj, G. Patriarche, H. Zhou, T. B. Hoang, A. F. Moses, S. Grønsberg, A. T. J. van Helvoort, B.-O. Fimland, and H. Weman, Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts, Nano Lett. 8, 4459 (2008).
  • [95]
    A. I. Persson, B. J. Ohlsson, S. Jeppesen, and L. Samuelson, Growth mechanisms for GaAs nanowires grown in CBE, J. Cryst. Growth 272, 167 (2004).
  • [96]
    L. Lugani, D. Ercolani, F. Rossi, G. Salviati, F. Beltram, and L. Sorba, Faceting of InAs–InSb heterostructured nanowires, Cryst. Growth Des. 10, 4038 (2010).
  • [97]
    E. P. A. M. Bakkers and M. A. Verheijen, Synthesis of InP nanotubes, J. Am. Chem. Soc. 125, 3440 (2003).
  • [98]
    A. M. Morales and C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279, 208 (1998).
  • [99]
    C. C. Weigand, M. R. Bergren, C. Ladam, J. Tveit, R. Holmestad, P. E. Vullum, J. C. Walmsley, Ø. Dahl, T. E. Furtak, R. T. Collins, J. Grepstad, and H. Weman, Formation of ZnO nanosheets grown by catalyst-assisted pulsed laser deposition, Cryst. Growth Des. 11, 5298 (2011).
  • [100]
    A. Fontcuberta i Morral, C. Colombo, G. Abstreiter, J. Arbiol, and J. R. Morante, Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires, Appl. Phys. Lett. 92, 063112 (2008).
  • [101]
    F. Jabeen, V. Grillo, S. Rubini, and F. Martelli, Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy, Nanotechnology 19, 275711 (2008).
  • [102]
    G. E. Cirlin, V. G. Dubrovskii, Y. B. Samsonenko, A. D. Bouravleuv, K. Durose, Y. Y. Proskuryakov, B. Mendes, L. Bowen, M. A. Kaliteevski, R. A. Abram, and D. Zeze, Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy, Phys. Rev. B 82, 035302 (2010).
  • [103]
    S. Plissard, K. A. Dick, X. Wallart, and P. Caroff, Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon, Appl. Phys. Lett. 96, 121901 (2010).
  • [104]
    M. Hilse, M. Ramsteiner, S. Breuer, L. Geelhaar, and H. Riechert, Incorporation of the dopants Si and Be into GaAs nanowires, Appl. Phys. Lett. 96, 193104 (2010).
  • [105]
    B. Mandl, J. Stangl, E. Hilner, A. A. Zakharov, K. Hillerich, A. W. Dey, L. Samuelson, G. N. Bauer, K. Deppert, and A. Mikkelsen, Growth mechanism of self-catalyzed group III–V nanowires, Nano Lett. 10, 4443 (2010).
  • [106]
    A. M. Munshi, D. L. Dheeraj, J. Todorovic, A. T. J. van Helvoort, H. Weman, and B.-O. Fimland, Crystal phase engineering in self-catalyzed GaAs and GaAs/GaAsSb nanowires grown on Si(111), J. Cryst. Growth 372, 163 (2013).
  • [107]
    J. Motohisa, J. Noborisaka, J. Takeda, M. Inari, and T. Fukui, Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates, J. Cryst. Growth 272, 180 (2004).
  • [108]
    K. Tomioka, T. Tanaka, S. Hara, K. Hiruma, and T. Fukui, III–V nanowires on Si substrate: selective-area growth and device applications, IEEE J. Sel. Top. Quantum Electron. 17, 1112 (2011).
  • [109]
    H. Paetzelt, V. Gottschalch, J. Bauer, G. Benndorf, and G. Wagner, Selective-area growth of GaAs and InAs nanowires – homo- and heteroepitaxy using templates, J. Cryst. Growth 310, 5093 (2008).
  • [110]
    J. N. Shapiro, A. Lin, P. S. Wong, A.C. Scofield, C. Tu, P. N. Senanayake, G. Mariani, B. L. Liang, and D. L. Huffaker, InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy, Appl. Phys. Lett. 97, 243102 (2010).
  • [111]
    W. I. Park, D. H. Kim, S. W. Jung, and G.-C. Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl. Phys. Lett. 80, 4232 (2002).
  • [112]
    P. Caroff, K. A. Dick, J. Johansson, M. E. Messing, K. Deppert, and L. Samuelson, Controlled polytypic and twin-plane superlattices in III–V nanowires, Nature Nanotechnol. 4, 50 (2009).
  • [113]
    H. Shtrikman, R. Popovitz-Biro, A. Kretinin, and M. Heiblum, Stacking-faults-free zinc blende GaAs nanowires, Nano Lett. 9, 215 (2009).
  • [114]
    K. A. Dick, C. Thelander, L. Samuelson, and P. Caroff, Crystal phase engineering in single InAs nanowires, Nano Lett. 10, 3494 (2010).
  • [115]
    P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, Structural phase control in self-catalyzed growth of GaAs nanowires on silicon (111), Nano Lett. 10, 4475 (2010).
  • [116]
    D. L. Dheeraj, A. M. Munshi, M. Scheffler, A. T. J. van Helvoort, H. Weman, and B. O. Fimland, Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy, Nanotechnology 24, 015601 (2013).
  • [117]
    M. C. Plante and R. R. LaPierre, Control of GaAs nanowire morphology and crystal structure, Nanotechnology 19, 495603 (2008).
  • [118]
    S. Lehmann, D. Jacobsson, K. Deppert, and K. Dick, High crystal quality wurtzite zinc blende heterostructures in metal-organic vapor phase epitaxy-grown GaAs nanowires, Nano Res. 5, 470 (2012).
  • [119]
    H. J. Joyce, J. Wong-Leung, Q. Gao, H. H. Tan, and C. Jagadish, Phase perfection in zinc blende and wurtzite III–V nanowires using basic growth parameters, Nano Lett. 10, 908 (2010).
  • [120]
    K. A. Dick, P. Caroff, J. Bolinsson, M. E. Messing, J. Johansson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Control of III–V nanowire crystal structure by growth parameter tuning, Semicond. Sci. Technol. 25, 024009 (2010).
  • [121]
    P. Caroff, J. Bolinsson, and J. Johansson, Crystal phases in III–V nanowires: from random toward engineered polytypism, IEEE J. Sel. Top. Quantum Electron. 17, 829 (2011).
  • [122]
    T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, and L. Samuelson, Nanowire arrays defined by nanoimprint lithography, Nano Lett. 4, 699 (2004).
  • [123]
    S. Plissard, K. A. Dick, G. Larrieu, S. Godey, A. Addad, X. Wallart, and P. Caroff, Gold-free growth of GaAs nanowires on silicon: arrays and polytypism, Nanotechnology 21, 385602 (2010).
  • [124]
    S. Hertenberger, D. Rudolph, M. Bichler, J. J. Finley, G. Abstreiter, and G. Koblmüller, Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy, J. Appl. Phys. 108, 114316 (2010).
  • [125]
    P. Aurélie, H. Moïra, L. D. Silke, E. A. Rienk, E. Vlieg, C. T. Eugene, A. V. Marc, W. G. I. George, A. V. Marcel, and P. A. M. B. Erik, Generic nano-imprint process for fabrication of nanowire arrays, Nanotechnology 21, 065305 (2010).
  • [126]
    D. Spirkoska, G. Abstreiter, and A. Fontcuberta i Morral, GaAs nanowires and related prismatic heterostructures, Semicond. Sci. Technol. 24, 113001 (2009).
  • [127]
    M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, Bright single-photon sources in bottom-up tailored nanowires, Nature Commun. 3, 737 (2012).
  • [128]
    M. N. Makhonin, A. P. Foster, A. B. Krysa, P. W. Fry, D. G. Davies, T. Grange, T. Walther, M. S. Skolnick, and L. R. Wilson, Homogeneous array of nanowire-embedded quantum light emitters, Nano Lett. 13, 861 (2013).
  • [129]
    Y. Yu, M.-F. Li, J.-F. He, Y.-M. He, Y.-J. Wei, Y. He, G.-W. Zha, X.-J. Shang, J. Wang, L.-J. Wang, G.-W. Wang, H.-Q. Ni, C.-Y. Lu, and Z.-C. Niu, Single InAs quantum dot grown at the junction of branched gold-free GaAs nanowire, Nano Lett. 13, 1399 (2013).
  • [130]
    M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D. D. O'Regan, J. W. Luo, B. Ketterer, S. Conesa-Boj, A. V. Kuhlmann, J. Houel, E. Russo-Averchi, J. R. Morante, M. Cantoni, N. Marzari, J. Arbiol, A. Zunger, R. J. Warburton, and A. Fontcuberta i Morral, Self-assembled quantum dots in a nanowire system for quantum photonics, Nature Mater. 12, 439 (2013).
  • [131]
    A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Mater. 6, 183 (2007).
  • [132]
    A. K. Geim and A. H. MacDonald, Graphene: exploring carbon flatland, Phys. Today 60, 35 (2007).
  • [133]
    A. Koma, Van der Waals epitaxy for highly lattice-mismatched systems, J. Cryst. Growth 201–202, 236 (1999).
  • [134]
    K. Nakada and A. Ishii, DFT calculation for adatom adsorption on graphene, in: Graphene Simulation, edited by J. R. Gong, ISBN: 978-953-307-556-3 (InTech, 2011), DOI: 10.5772/20477.
  • [135]
    K. Nakada and A. Ishii, Migration of adatom adsorption on graphene using DFT calculation, Solid State Commun. 151, 13 (2011).
  • [136]
    M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers, Appl. Phys. Lett. 61, 2051 (1992).
  • [137]
    A. M. Munshi, D. L. Dheeraj, V. T. Fauske, D.-C. Kim, A. T. J. van Helvoort, B.-O. Fimland, and H. Weman, Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth, Nano Lett. 12, 4570 (2012).
  • [138]
    W. I. Park and G. C. Yi, Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN, Adv. Mater. 16, 87 (2004).
  • [139]
    P. Sun-Hong, K. Seon-Hyo, and H. Sang-Wook, Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications, Nanotechnology 18, 055608 (2007).
  • [140]
    M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.-W. Lee, and J.-M. Myoung, ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes, Small 3, 568 (2007).
  • [141]
    E. Lai, W. Kim, and P. Yang, Vertical nanowire array-based light emitting diodes, Nano Res. 1, 123 (2008).
  • [142]
    J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, Broadband ZnO single-nanowire light-emitting diode, Nano Lett. 6, 1719 (2006).
  • [143]
    D. Vanmaekelbergh and L. K. van Vugt, ZnO nanowire lasers, Nanoscale 3, 2783 (2011).
  • [144]
    L. K. van Vugt, S. Rühle, and D. Vanmaekelbergh, Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire, Nano Lett. 6, 2707 (2006).
  • [145]
    A. Yu, H. Li, H. Tang, T. Liu, P. Jiang, and Z. L. Wang, Vertically integrated nanogenerator based on ZnO nanowire arrays, Phys. Status Solidi RRL 5, 162 (2011).
  • [146]
    X.-Q. Fang, J.-X. Liu, and V. Gupta, Fundamental formulations and recent achievements in piezoelectric nano-structures: a review, Nanoscale 5, 1716 (2013).
  • [147]
    J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, Carrier density and Schottky barrier on the performance of DC nanogenerator, Nano Lett. 8, 328 (2007).
  • [148]
    N. Q. Khanh, I. Lukacs, S. Kurunczi, G. Safran, Z. Szabo, J. Volk, K. Kubina, and R. Erdelyi, Integrated horizontal ZnO nanowires for sensor applications, in: Sensors 2012 (IEEE, 2012), p. 1.
  • [149]
    S. Zhi-Peng, L. Lang, Z. Li, and J. Dian-Zeng, Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties, Nanotechnology 17, 2266 (2006).
  • [150]
    Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, Synthesis, characterization, and applications of ZnO nanowires, J. Nanomater. 2012, 22 (2012).
  • [151]
    S. J. Pearton, C. Y. Chang, B. H. Chu, C.-F. Lo, F. Ren, W. Chen, and J. Guo, ZnO, GaN, and InN functionalized nanowires for sensing and photonics applications, IEEE J. Sel. Top. Quantum Electron. 17, 1092 (2011).
  • [152]
    A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, and M. Lux-Steiner, Influence of the local absorber layer thickness on the performance of ZnO nanorod solar cells, Phys. Status Solidi RRL 2, 172 (2008).
  • [153]
    M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, Nanowire dye-sensitized solar cells, Nature Mater. 4, 455 (2005).
  • [154]
    Q. Peng and Y. Qin, ZnO nanowires and their application for solar cells, in: Nanowires – Implementations and Applications, edited by A. Hashim, ISBN: 978-953-307-318-7 (InTech, 2011), DOI: 10.5772/17923.
  • [155]
    Y.-J. Kim, J.-H. Lee, and G.-C. Yi, Vertically aligned ZnO nanostructures grown on graphene layers, Appl. Phys. Lett. 95, 213101 (2009).
  • [156]
    K. Yong-Jin, Hadiyawarman, Y. Aram, K. Miyoung, Y. Gyu-Chul, and L. Chunli, Hydrothermally grown ZnO nanostructures on few-layer graphene sheets, Nanotechnology 22, 245603 (2011).
  • [157]
    B. Kumar, K. Y. Lee, H.-K. Park, S. J. Chae, Y. H. Lee, and S.-W. Kim, Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators, ACS Nano 5, 4197 (2011).
  • [158]
    H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan, Growth of epitaxial nanowires at the junctions of nanowalls, Science 300, 1249 (2003).
  • [159]
    Z. Kan, S. Jung-Hun, Z. Weidong, and M. Zhenqiang, Fast flexible electronics using transferrable silicon nanomembranes, J. Phys. D, Appl. Phys. 45, 143001 (2012).
  • [160]
    H. Zhou, J.-H. Seo, D. M. Paskiewicz, Y. Zhu, G. K. Celler, P. M. Voyles, W. Zhou, M. G. Lagally, and Z. Ma, Fast flexible electronics with strained silicon nanomembranes, Sci. Rep. 3, 1291 (2013).
  • [161]
    J. P. Alper, A. Gutes, C. Carraro, and R. Maboudian, Semiconductor nanowires directly grown on graphene – towards wafer scale transferable nanowire arrays with improved electrical contact, Nanoscale 5, 4114 (2013).
  • [162]
    D. H. Lee, J. Yi, J. M. Lee, S. J. Lee, Y.-J. Doh, H. Y. Jeong, Z. Lee, U. Paik, J. A. Rogers, and W. I. Park, Engineering electronic properties of graphene by coupling with Si-rich, two-dimensional islands, ACS Nano 7, 301 (2012).
  • [163]
    H. J. Joyce, Q. Gao, H. Hoe Tan, C. Jagadish, Y. Kim, J. Zou, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, P. Parkinson, and M. B. Johnston, III–V semiconductor nanowires for optoelectronic device applications, Prog. Quantum Electron. 35, 23 (2011).
  • [164]
    J. A. del Alamo, Nanometre-scale electronics with III–V compound semiconductors, Nature 479, 317 (2011).
  • [165]
    J. Yoon, S. Jo, I. S. Chun, I. Jung, H.-S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies, Nature 465, 329 (2010).
  • [166]
    C.-W. Cheng, K.-T. Shiu, N. Li, S.-J. Han, L. Shi, and D. K. Sadana, Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics, Nature Commun. 4, 1577 (2013).
  • [167]
    J. Lee, J. Wu, M. Shi, J. Yoon, S.-I. Park, M. Li, Z. Liu, Y. Huang, and J. A. Rogers, Stretchable GaAs photovoltaics with designs that enable high areal coverage, Adv. Mater. 23, 986 (2011).
  • [168]
    K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes, Nature Photon. 6, 809 (2012).
  • [169]
    K. Chung, S. In Park, H. Baek, J.-S. Chung, and G.-C. Yi, High-quality GaN films grown on chemical vapor-deposited graphene films, NPG Asia Mater. 4, e24 (2012).
  • [170]
    D.-H. Kim, N. Lu, R. Ghaffari, and J. A. Rogers, Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics, NPG Asia Mater. 4, e15 (2012).
  • [171]
    P. Gupta, A. A. Rahman, N. Hatui, M. R. Gokhale, M. M. Deshmukh, and A. Bhattacharya, MOVPE growth of semipolar III-nitride semiconductors on CVD graphene, J. Cryst. Growth 372, 105 (2013).
  • [172]
    H. Yoo, K. Chung, S. I. Park, M. Kim, and G.-C. Yi, Microstructural defects in GaN thin films grown on chemically vapor-deposited graphene layers, Appl. Phys. Lett. 102, 051908 (2013).
  • [173]
    K. Chung, C.-H. Lee, and G.-C. Yi, Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices, Science 330, 655 (2010).
  • [174]
    K. Tateno, D. Takagi, G. Zhang, H. Gotoh, H. Hibino, and T. Sogawa, VLS growth of III–V semiconductor nanowires on graphene layers, MRS Proc. 1439, 45 (2012).
  • [175]
    P. K. Mohseni, G. Lawson, C. Couteau, G. Weihs, A. Adronov, and R. R. LaPierre, Growth and characterization of GaAs nanowires on carbon nanotube composite films: toward flexible nanodevices, Nano Lett. 8, 4075 (2008).
  • [176]
    Y. J. Hong and T. Fukui, Controlled van der Waals heteroepitaxy of InAs nanowires on carbon honeycomb lattices, ACS Nano 5, 7576 (2011).
  • [177]
    Y. J. Hong, W. H. Lee, Y. Wu, R. S. Ruoff, and T. Fukui, van der Waals epitaxy of InAs nanowires vertically aligned on single-layer graphene, Nano Lett. 12, 1431 (2012).
  • [178]
    P. K. Mohseni, A. Behnam, J. D. Wood, C. D. English, J. W. Lyding, E. Pop, and X. Li, Inx Ga1–xAs nanowire growth on graphene: van der Waals epitaxy induced phase segregation, Nano Lett. 13, 1153 (2013).
  • [179]
    H. Park, S. Chang, J. Jean, J. J. Cheng, P. T. Araujo, M. Wang, M. G. Bawendi, M. S. Dresselhaus, V. Bulović, J. Kong, and S. Gradečak, Graphene cathode-based ZnO nanowire hybrid solar cells, Nano Lett. 13, 233 (2013).
  • [180]
    W. Choi, K.-S. Shin, H. Lee, D. Choi, K. Kim, H.-J. Shin, S.-M. Yoon, J.-Y. Choi, and S.-W. Kim, Selective growth of ZnO nanorods on SiO2/Si substrates using a graphene buffer layer, Nano Res. 4, 440 (2011).
  • [181]
    Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu, Graphene annealing: how clean can it be?, Nano Lett. 12, 414 (2012).
  • [182]
    H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic, and J. Kong, Doped graphene electrodes for organic solar cells, Nanotechnology 21, 505204 (2010).
  • [183]
    X. Wang, L. Zhi, and K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8, 323 (2007).
  • [184]
    A. Nadarajah, R. C. Word, J. Meiss, and R. Konenkamp, Flexible inorganic nanowire light-emitting diode, Nano Lett. 8, 534 (2008).
  • [185]
    P. X. Gao, J. Song, J. Liu, and Z. L. Wang, Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices, Adv. Mater. 19, 67 (2007).
  • [186]
    C.-H. Lee, Y.-J. Kim, Y. J. Hong, S.-R. Jeon, S. Bae, B. H. Hong, and G.-C. Yi, Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films, Adv. Mater. 23, 4614 (2011).
  • [187]
    D. Choi, M.-Y. Choi, W. M. Choi, H.-J. Shin, H.-K. Park, J.-S. Seo, J. Park, S.-M. Yoon, S. J. Chae, Y. H. Lee, S.-W. Kim, J.-Y. Choi, S. Y. Lee, and J. M. Kim, Fully rollable transparent nanogenerators based on graphene electrodes, Adv. Mater. 22, 2187 (2010).
  • [188]
    J. Yi, J. M. Lee, and W. I. Park, Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors, Sens. Actuators B, Chem. Rev. 155, 264 (2011).