• network meta-analysis;
  • health technology assessment;
  • statistical methodology

We introduce health technology assessment and evidence synthesis briefly, and then concentrate on the statistical approaches used for conducting network meta-analysis (NMA) in the development and approval of new health technologies. NMA is an extension of standard meta-analysis where indirect as well as direct information is combined and can be seen as similar to the analysis of incomplete-block designs. We illustrate it with an example involving three treatments, using fixed-effects and random-effects models, and using frequentist and Bayesian approaches. As most statisticians in the pharmaceutical industry are familiar with SAS® software for analyzing clinical trials, we provide example code for each of the methods we illustrate. One issue that has been overlooked in the literature is the choice of constraints applied to random effects, and we show how this affects the estimates and standard errors and propose a symmetric set of constraints that is equivalent to most current practice. Finally, we discuss the role of statisticians in planning and carrying out NMAs and the strategy for dealing with important issues such as heterogeneity. Copyright © 2011 John Wiley & Sons, Ltd.