Antiproliferative Activity of Flavonoids: Influence of the Sequential Methoxylation State of the Flavonoid Structure


Soltan Ahmad Ebrahimi, Pharmacology Department and Razi Institute for Drug Research, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.



Dracocephalum kotschyi Boiss. has been used as part of an ethnobotanical remedy against many forms of human cancer in Iran. It has been demonstrated that a flavonoid named xanthomicrol from D. kotschyi contributes to its preferential antiproliferative activity against malignant cells. In the present study, the antiproliferative activity of its flavonoid fraction was further characterized. Using liquid–liquid extraction and a semi-preparative reversed-phase HPLC method, eight flavonoid aglycones were isolated from the aerial parts of the plant and their identities were confirmed through MS and NMR analyses as luteolin, naringenin, apigenin, isokaempferide, cirsimaritin, penduletin, xanthomicrol and calycopterin. The in vitro antiproliferative activity of each compound was evaluated against a panel of established normal and malignant cell lines using the MTT assay and some structure–activity relationships were observed. The hydroxyflavones (luteolin, apigenin and isokaempferide) exerted comparable antiproliferative activities against malignant and normal cells, while the methoxylated hydroxyflavones (cirsimaritin, penduletin, xanthomicrol and calycopterin) showed preferential activities against tumor cells. This activity may be of value in treating tumors as it would exert few side effects in normal tissues. Xanthomicrol selectively inhibited the growth of human gastric adenocarcinoma, while calycopterin selectively prevented human acute promyelocytic leukemia and human colon carcinoma cells proliferation. Copyright © 2011 John Wiley & Sons, Ltd.