SEARCH

SEARCH BY CITATION

References

  • ALADIN International Team. 1997. The ALADIN project: Mesoscale modelling seen as a basic tool for weather forecasting and atmospheric research. WMO Bulletin 46: 317324.
  • Annan JD, Lunt DJ, Hargreaves JC, Valdes PJ. 2005. Parameter estimation in an atmospheric GCM using the ensemble Kalman filter. Nonlinear Proc. Geophys. 12: 363371.
  • Barkmeijer J. 2010. ‘Experiences with a strong outflow case in HARMONIE’. HIRLAM Newsletter 55B: 510.
  • Bénard P, Marki A, Neytchev PN, Prtenjak MT. 2000. Stabilization of non-linear vertical diffusion schemes in the context of NWP models. Mon. Weather Rev. 128: 19371948.
  • Best MJ, Beljaars A, Polcher J, Viterbo P. 2004. A proposed structure for coupling tiled surfaces with the planetary boundary layer. J. Hydrometeorol. 5: 12711278.
  • Caya A, Laprise M, Zwach P. 1998. Consequences of using the splitting method for implementing physical forcings in a semi-implicit semi-Lagrangian model. Mon. Weather Rev. 126: 17071713.
  • Cuxart J, Bougeault P, Redelsperger J-L. 2000. A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. Meteorol. Soc. 126: 130.
  • Diamantakis M, Wood N, Davies T. 2006. An improved implicit predictor-corrector scheme for boundary-layer vertical diffusion. Q. J. R. Meteorol. Soc. 132: 959978.
  • Dubal M, Wood N, Staniforth A. 2004. Analysis of parallel versus sequential splittings for time-stepping physical parametrizations. Mon. Weather Rev. 132: 121132.
  • Geleyn J-F. 1987. Use of a modified Richardson number for parametrizing the effect of shallow convection. J. Meteorol. Soc. Japan 65: 141149.
  • Giard D, Bazile E. 2000. Implementation of a new assimilation scheme for soil and surface variables in a global NWP model. Mon. Weather Rev. 128: 9971015.
  • Kalnay E, Kanamitsu K. 1988. Time schemes for strongly nonlinear damping equations. Mon. Weather Rev. 116: 19451958.
  • Le Moigne P, Boone A, Calvet J-C, Decharme B, Faroux S, Gibelin A-L, Lebeaupin C, Mahfouf J-F, Martin E, Masson V, Mironov D, Noilhan J, Tulet P, vd Hurk B. 2009. ‘SURFEX scientific documentation’. Tech. report, Météo-France: Toulouse.
  • Louis J-F. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Boundary-Layer Meteorol. 17: 187202.
  • Louis J-F, Tiedtke M, Geleyn J-F. 1981. ‘A short history of the operational PBL parameterization at ECMWF’. In Proceedings of workshop on PBL parametrization. ECMWF: Reading, UK. 5980.
  • Noilhan J, Mahfouf J-F. 1996. The ISBA land surface parametrization scheme. Global Planetary Change 13: 145159. DOI: 10.1016/0921-8181(95)00043-7.
  • Redelsperger J-L, Mahé F, Carlotti P. 2001. A simple and general subgrid model suitable both for surface-layer and free-stream turbulence. Boundary-Layer Meteorol. 101: 375408.
  • Staniforth A, Wood N, Côté J. 2002. Analysis of the numerics of physics–dynamics coupling. Q. J. R. Meteorol. Soc. 128: 27792799.
  • Teixeira J, Cheinet S. 2004. A simple mixing-length formulation for the eddy-diffusivity parametrization of dry convection. Boundary-Layer Meteorol. 110: 435453.
  • Termonia P, Hamdi R. 2007. Stability and accuracy of the physics–dynamics coupling in spectral models. Q. J. R. Meteorol. Soc. 133: 15891604.
  • Váňa F, Bénard P, Geleyn J-F, Simon A, Seity Y. 2008. Semi-Lagrangian advection scheme with controlled damping: An alternative to nonlinear horizontal diffusion in a numerical weather prediction model. Q. J. R. Meteorol. Soc. 134: 523537.
  • Wood N, Diamantakis M, Staniforth A. 2007. A monotonically damping second-order-accurate unconditionally stable numerical scheme for diffusion. Q. J. R. Meteorol. Soc. 133: 15591573.