SEARCH

SEARCH BY CITATION

References

  • Adcroft A, Campin J-M, Hill C, Marshall J. 2004. Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon. Weather Rev. 132: 28452863.
  • Adcroft A, Hallberg R, Harrison M. 2008. A finite volume discretization of the pressure gradient force using analytical integration. Ocean Modelling 22: 106113.
  • Anderson JL, Balaji V, Broccoli AJ, Cooke WF, Delworth TL, Dixon KW, Donner LJ, Dunne KA, Freidenreich SM, Garner ST, Gudgel RG, Gordon CT, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhost AR, Lau N-C, Liang Z, Malyshev SL, Milly PCD, Nath MJ, Ploshay JJ, Ramaswamy V, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Soden BJ, Stern WF, Thompson LA, Wilson RJ, Wittenberg AT, Wyman BL. 2004. The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate 17: 46414673.
  • Bacon DP, Ahmad NN, Boybeyi Z, Dunn TJ, Hall MS, Lee PCS, Snanthkrishna Sarma R, Turner MD. 2000. A dynamically adapting weather and dispersion model: The Operational Multiscale Environment Model with Grid Adaptivity (OMEGA). Mon. Weather Rev. 128: 20442076.
  • Chu PC, Fan C. 2003. Hydrostatic correction for sigma-coordinate ocean models. J. Geophys. Res. 108: 3206, DOI: 10.1029/2002JC001668.
  • Christon MA. 2009. The consistency of pressure-gradient approximations used in multi-dimensional shock hydrodynamics. Int. J. Numer. Methods Fluids 64: 7197.
  • Dowling TE, Fischer AS, Gierasch PJ, Harrington J, LeBeau RP, Santori CM. 1998. The explicit planetary isentropic-coordinate (EPIC) atmospheric model. Icarus 132: 221238.
  • Dowling TE, Bradley ME, Colon E, Kramer J, LeBeau RP, Lee GCH, Mattox TI, Morales-Juberias R, Palotai CJ, Parimi VK, Showman A. 2006. The EPIC atmospheric model with an isentropic/terrain-following hybrid vertical coordinate. Icarus 182: 259273.
  • Herrnstein A, Dowling TE. 2007. Effects of topography on the spin-up of a Venus atmospheric model. J. Geophys. Res. 112: E04S08, DOI: 10.1029/2006JE002804.
  • Lin SJ. 1997. A finite-volume integration method for computing pressure gradient force in general vertical coordinates. Q. J. R. Meteorol. Soc. 123: 17491762.
  • Lin SJ. 2004. A ‘vertically Lagrangian’ finite-volume dynamical core for global models. Mon. Weather Rev. 132: 22932307.
  • Machenhauer B, Kaas E, Lauritzen PH. 2009. Finite-volume methods in meteorology. 3–120 in Computational Methods for the Atmospheres and the Oceans, Temam R, Tribbia J (eds). Handbook of Numerical Analysis 14: Elsevier.
  • Mavriplis DJ. 2003. ‘Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes’. NASA/CR-2003-212683, NIA Report No. 2003-06. Langley Research Center: Virginia, USA.
  • Mesinger F. 1982. On the convergence and error problems of the calculation of the pressure gradient force in sigma coordinate models. Geophys. Astrophys. Fluid Dyn. 19: 105117. DOI: 10.1080/03091928208208949.
  • Ronchi C, Iacono R, Paolucci PS. 1996. The ‘cubed sphere’: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124: 93114.
  • Sawyer WB, Mirin AA. 2007. The implementation of the finite-volume dynamical core in the community atmosphere model. J. Comput. Appl. Math. 203: 387396.
  • Wolfram. 2010. Mathematica, version 8. Wolfram Research Inc: Champaign, IL.