SEARCH

SEARCH BY CITATION

References

  • Akkermans T, Böhme T, Demuzere M, Crewell S, Selbach C, Reinhardt T, Seifert A, Ament F, van Lipzig NPM. 2012. Regime-dependent evaluation of accumulated precipitation in COSMO. Theor. Appl. Climatol., DOI: 10.1007/s00704-011-0502-0 (in press).
  • Böhme T, Stapelberg S, Akkermans T, Crewell S, Fischer J, Reinhardt T, Seifert A, Selbach C, van Lipzig NPM. 2011. Long-term evaluation of COSMO forecasting using combined observational data of the GOP period. Meteorol. Z. 20: 119132.
  • Bryan GH, Morrison H. 2012. Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Weather Rev. 140: 202225.
  • Bryan GH, Wyngaard JC, Fritsch JM. 2003. Resolution requirements for the simulation of deep moist convection. Mon. Weather Rev. 131: 23942416.
  • Bugliaro L, Zinner T, Keil C, Mayer B, Hollmann R, Reuter M, Thomas W. 2010. Validation of cloud property retrievals with simulated satellite radiances: A case study for SEVIRI. Atmos. Chem. Phys. Discuss. 10: 2193121988.
  • Cohen C, McCaul Jr EW. 2006. The sensitivity of simulated convective storms to variations in prescribed single-moment microphysics parameters that describe particle distributions, sizes, and numbers. Mon. Weather Rev. 134: 25472565.
  • Colle BA, Garvert MF, Wolfe JB, Mass CF, Woods CP. 2005. The 13–14 December 2001 IMPROVE-2 event. Part III: Simulated microphysical budgets and sensitivity studies. J. Atmos. Sci. 62: 35353558.
  • Cox GP. 1988. Modelling precipitation in frontal rainbands. Q. J. R. Meteorol. Soc. 114: 115127.
  • Crewell S, Mech M, Reinhardt T, Selbach C, Betz H-D, Brocard E, Dick G, O'Connor E, Fischer J, Hanisch T, Hauf T, Hünerbein A, Delobbe L, Mathes A, Peters G, Wernli H, Wiegner M, Wulfmeyer V. 2008. The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results. Meteorol. Z. 17: 849866.
  • Deng AJ, Stauffer DR. 2006. On improving 4-km mesoscale model simulations. J. Appl. Meteorol. Clim. 45: 361381.
  • Federer B, Waldvogel A. 1975. Hail and raindrop size distributions from a Swiss multicell storm. J. Appl. Meteorol. 14: 9197.
  • Ferrier BS. 1994. A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci. 51: 249280.
  • Fu Q, Liou KN. 1993. Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci. 50: 20082025.
  • Gilmore MS, Straka JM, Rasmussen EN. 2004. Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Weather Rev. 132: 26102627.
  • Goudenhoofdt E, Delobbe L. 2009. Evaluation of radar–gauge merging methods for quantitative precipitation estimates. Hydrol. Earth Syst. Sci. 13: 195203.
  • Gunn KLS, Marshall JS. 1958. The distribution with size of aggregate snowflakes. J. Meteorol. 15: 452461.
  • Houze Jr RA, Hobbs PV, Herzegh PH, Parsons DB. 1979. Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci. 36: 156162.
  • Jakob C. 2003. An improved strategy for the evaluation of cloud parameterizations in GCMs. Bull. Am. Meteorol. Soc. 84: 13871401.
  • Kain JS, Fritsch JM. 1993. Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models. Meteorol. Monogr. 24: 165170.
  • Karlsson K-G, Willén U, Jones C, Wyser K. 2008. Evaluation of regional cloud climate simulations over Scandinavia using a 10-year NOAA Advanced Very High Resolution Radiometer cloud climatology. J. Geophys. Res. 113: D01203, DOI: 10.1029/2007JD008658.
  • Keil C, Tafferner A, Mannstein H, Schättler U. 2003. Evaluating high-resolution model forecasts of European winter storms by use of satellite and radar observations. Weather and Forecasting 18: 732747.
  • Kong FY, Yau MK. 1997. An explicit approach to microphysics in MC2. Atmos.–Ocean 35: 257291.
  • Lin Y-L, Farley RD, Orville HD. 1983. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 22: 10651092.
  • Liu JY, Orville HD. 1969. Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci. 26: 12831298.
  • Locatelli JD, Hobbs PV. 1974. Fall speeds and masses of solid precipitation particles. J. Geophys. Res. 79: 21852197.
  • Luo ZJ, Liu GY, Stephens GL. 2010. Use of A-Train data to estimate convective buoyancy and entrainment rate. Geophys. Res. Lett. 37: L09804, DOI: 10.1029/2010GL042904.
  • Marshall JS, Palmer WM. 1948. The distribution of raindrops with size. J. Meteorol. 5: 165166.
  • Milbrandt JA, Yau MK. 2005. A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci. 62: 30653081.
  • Milbrandt JA, Yau MK, Mailhot J, Bélair S, McTaggert-Cowan R. 2010. Simulation of an orographic precipitation event during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme. Mon. Weather Rev. 138: 625642.
  • Morrison H, Milbrandt JA. 2011. Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Weather Rev. 139: 11031130.
  • Morrison H, Curry JA, Khvorostyanov VI. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci. 62: 16651677.
  • Noilhan J, Planton S. 1989. A simple parameterization of land surface processes for meteorological models. Mon. Weather Rev. 117: 536549.
  • Otkin JA, Greenwald TJ. 2008. Comparison of WRF model-simulated and MODIS-derived cloud data. Mon. Weather Rev. 136: 19571970.
  • Reinhardt T, Seifert A. 2006. A three-category ice scheme for LMK. Cosmo Newsletter 6: 115120, http://www.cosmo-model.org.
  • Roebeling RA, Feijt AJ, Stammes P. 2006. Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res. 111: D20210, DOI: 10.1029/2005JD006990.
  • Rossow WB, Schiffer RA. 2001. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80: 22612287.
  • Rutledge SA, Hobbs PV. 1983. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the ‘seeder–feeder’ process in warm-frontal rainbands. J. Atmos. Sci. 40: 11851206.
  • Schröder M, van Lipzig NPM, Ament F, Chaboureau J-P, Crewell S, Fischer J, Matthias V, van Meijgaard E, Walther A, Willén U. 2006. Model predicted low-level cloud parameters. Part II: Comparison with satellite remote sensing observations during the BALTEX Bridge Campaigns. Atmos. Res. 82: 83101.
  • Schulz J, Thomas W, Müller R, Behr H-D, Caprion D, Deneke H, Dewitte S, Dürr B, Fuchs P, Gratzki A, Hechler P, Hollmann R, Johnston S, Karlsson K-G, Manninen T, Reuter M, Riihelä A, Roebeling R, Selbach N, Tetzlaff A, Wolters E, Zelenka A, Werscheck M. 2009. Operational climate monitoring from space: The EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmos. Chem. Phys. 9: 16871709.
  • Seifert A, Beheng KD. 2006. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 2: Maritime vs. continental deep convective storms. Meteorol. Atmos. Phys. 92: 6782.
  • Serafin S, Ferretti R. 2007. Sensitivity of a mesoscale model to microphysical parameterizations in the MAP SOP events IOP2b and IOP8. J. Appl. Meteorol. Clim. 46: 14381454.
  • Stoelinga MT, Hobbs PV, Mass CF, Locatelli JD, Colle BA, Houze Jr RA, Rangno AL, Bond NA, Smull BF, Rasmussen RM, Thompson G, Colman BR. 2003. Improvement of microphysical parameterization through observational verification experiment. Bull. Am. Meteorol. Soc. 84: 18071826.
  • Sui C-H, Li X, Lau K-M. 1998. Radiative–convective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci. 55: 23452357.
  • Sun W-Y, Chang C-Z. 1986. Diffusion model for a convective layer. Part I: Numerical simulation of convective boundary layer. J. Clim. Appl. Meteorol. 25: 14451453.
  • Tao W-K, Simpson J, Baker D, Braun S, Chou M-D, Ferrier B, Johnson D, Khain A, Lang S, Lynn B, Shie C-L, Starr D, Sui C-H, Wang Y, Wetzel P. 2003. Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteorol. Atmos. Phys. 82: 97137.
  • Thompson G, Rasmussen RM, Manning K. 2004. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Weather Rev. 132: 519542.
  • van den Heever SC, Cotton WR. 2004. The impact of hail size on simulated supercell storms. J. Atmos. Sci. 61: 15961609.
  • van Lipzig NPM, Schröder M, Crewell S, Ament F, Chaboureau J-P, Löhnert U, Matthias V, van Meijgaard E, Quante M, Willén U, Wen WC. 2006. Model predicted low-level cloud parameters. Part I: Comparison with observations from the BALTEX Bridge Campaigns. Atmos. Res. 82: 5582.
  • Van Weverberg K, van Lipzig NPM, Delobbe L. 2011a. The evaluation of moist processes in km-scale NWP models using remote sensing and in situ data: Impact of size distribution assumptions. Atmos. Res. 99: 1538.
  • Van Weverberg K, van Lipzig NPM, Delobbe L. 2011b. The impact of size distribution assumptions in a bulk one-moment microphysics scheme on simulated surface precipitation and storm dynamics during a low-topped supercell case in Belgium. Mon. Weather Rev. 139: 11311147.
  • Van Weverberg K, Vogelmann AM, Morrison H, Milbrandt JA. 2012. Sensitivity of idealized squall line simulations to the level of complexity used in two-moment bulk microphysics schemes. Mon. Weather Rev., in press, DOI: 10.1175/MWR-D-11-00120.1.
  • Wisner C, Orville HD, Myers C. 1972. A numerical model of a hail-bearing cloud. J. Atmos. Sci. 29: 11601181.
  • Woods CP, Stoelinga MT, Locatelli JD. 2007. The IMPROVE-1 storm of 1–2 February 2001. Part III: Sensitivity of a mesoscale model simulation to the representation of snow particle types and testing of a bulk microphysical scheme with snow habit prediction. J. Atmos. Sci. 64: 39273948.
  • Xue M. 2000. High-order monotonic numerical diffusion and smoothing. Mon. Weather Rev. 128: 28532864.
  • Xue M, Droegemeier KK, Wong V. 2000. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorol. Atmos. Phys. 75: 161193.
  • Xue M, Droegemeier KK, Wong V, Shapiro A, Brewster K, Carr F, Weber D, Liu Y, Wang D. 2001. The Advanced Regional Prediction System (ARPS)—A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteorol. Atmos. Phys. 76: 143165.