SEARCH

SEARCH BY CITATION

References

  • Anderson JL. 1996. A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Climate 9: 15181530.
  • Anderson JL. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129: 28842903.
  • Anderson JL, Anderson SL. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127: 27412758.
  • Bengtsson L, Arkin P, Berrisford P, Bougeault P, Folland CK, Gordon C, Haines K, Hodges KI, Jones P, Kållberg P, Rayner N, Simmons A, Stammer D, Thorne PW, Uppala S, Vose RS. 2007. The need for a dynamical climate reanalysis. Bull. Amer. Meteorol. Soc. 88: 495501.
  • Bergemann K, Gottwald GA, Reich S. 2009. Ensemble propagation and continuous matrix factorization algorithms. Q. J. R. Meteorol. Soc. 135: 15601572.
  • Bishop CH, Etherton BJ, Majumdar SJ. 2001. Adaptive sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical aspects. Mon. Weather Rev. 129: 420436.
  • Blumen W. 1990. A semi-geostrophic Eady-wave frontal model incorporating momentum diffusion. Part II: Kinetic energy and enstrophy dissipation. J. Atmos. Sci. 47: 29032908.
  • Buizza R, Houtekamer PL, Pellerin G, Toth Z, Zhu Y, Wei M. 2005. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Weather Rev. 133: 10761097.
  • Burgers G, van Leeuwen PJ, Evensen G. 1998. Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126: 17191724.
  • Charron M, Pellerin G, Spacek L, Houtekamer PL, Gagnon N, Mitchell HL, Michelin L. 2010. Toward random sampling of model error in the Canadian ensemble prediction system. Mon. Weather Rev. 138: 18771901.
  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason Jr BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ. 2011. The Twentieth Century reanalysis project. Q. J. R. Meteorol. Soc. 137: 128.
  • Côté J, Staniforth A. 1988. A two-time-level semi-Lagrangian semi-implicit scheme for spectral models. Mon. Weather Rev. 116: 20032016.
  • Dee DP, Da Silva AM. 1998. Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc. 124: 269295.
  • Dee DP, Todling R. 2000. Data assimilation in the presence of forecast bias: The GEOS moisture analysis. Mon. Weather Rev. 128: 32683282.
  • Dubinkina S, Frank J. 2007. Statistical mechanics of Arakawa's discretizations. J. Comput. Phys. 227: 12861305.
  • Dubinkina S, Frank J. 2010. Statistical relevance of vorticity conservation in the Hamiltonian particle-mesh method. J. Comput. Phys. 229: 26342648.
  • Durran DR. 1999. Numerical Methods for Wave Equations in Geophysical Fluid Dynamics. Springer: New York, NY.
  • Eckermann SD, Hoppel KW, Coy L, McCormack JP, Siskind DE, Nielsen K, Kochenash A, Stevens MH, Englert CR, Singer W, Hervig M. 2009. High-altitude data assimilation system experiments for the northern summer mesosphere season 2007. J. Atmos. Solar-Terrest. Phys. 71: 531551.
  • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99C5 1014310162.
  • Evensen G. 2006. Data Assimilation: The Ensemble Kalman Filter. Springer: New York, NY.
  • Fisher M, Leutbecher M, Kelly GA. 2005. On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc. 131: 32353246.
  • Frederiksen JS, Davies AG. 1997. Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci. 54: 24752492.
  • Golub GH, Loan CFV. 1996. Matrix Computations. The Johns Hopkins University Press: Baltimore, MD.
  • Gottwald GA, Mitchell L, Reich S. 2011. Controlling overestimation of error covariance in ensemble Kalman filters with sparse observations: A variance limiting Kalman filter. Mon. Weather Rev. 139: 26502667.
  • Grote MJ, Majda AJ. 2006. Stable time filtering of strongly unstable spatially extended systems. Proc. Nat. Acad. Sci. 103: 75487553.
  • Hamill TM, Colucci SJ. 1997. Verification of Eta/RSM short-range ensemble forecasts. Mon. Weather Rev. 125: 13121327.
  • Hamill TM, Whitaker JS. 2011. What constrains spread growth in forecasts initialized from ensemble Kalman filters. Mon. Weather Rev. 139: 117131.
  • Houtekamer PL, Mitchell HL. 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126: 796811.
  • Houtekamer PL, Mitchell HL, Pellerin G, Buehner M, Charron M, Spacek L, Hansen B. 2005. Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Weather Rev. 133: 604620.
  • Kalnay E. 2002. Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press: Cambridge, UK.
  • Leimkuhler B, Reich S. 2005. Simulating Hamiltonian Dynamics. Cambridge University Press: Cambridge, UK.
  • Liu J, Fertig EJ, Li H, Kalnay E, Hunt BR, Kostelich EJ, Szunyogh I, Todling R. 2008. Comparison between local ensemble transform Kalman filter and PSAS in the NASA finite volume GCM—perfect model experiments. Nonlinear Proc. Geophys. 15: 645659.
  • Lorenz EN. 1996. Predictability—a problem partly solved. In: Proceedings of Seminar on Predictability, 4–8 September 1995. ECMWF: Reading, UK.
  • Majda AJ, Timofeyev I, Vanden Eijnden E. 1999. Models for stochastic climate prediction. Proc. Nat. Acad. Sci. 96: 1468714691.
  • Mitchell L, Gottwald GA. 2012. Data assimilation in slow–fast systems using homogenized climate models. J. Atmos. Sci. 69: 13591377.
  • Molteni F, Palmer TN. 1993. Predictability and finite-time instability of the northern winter circulation. Q. J. R. Meteorol. Soc. 119: 269298.
  • Ott E, Hunt B, Szunyogh I, Zimin A, Kostelich E, Corrazza M, Kalnay E, Yorke J. 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus A 56: 415428.
  • Palmer TN, Williams P (eds). 2010. Stochastic physics and climate modelling. Cambridge University Press: Cambridge, UK.
  • Palmer TN. 2001. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Q. J. R. Meteorol. Soc. 127: 279304.
  • Polavarapu S, Shepherd TG, Rochon Y, Ren S. 2005. Some challenges of middle atmosphere data assimilation. Q. J. R. Meteorol. Soc. 131: 35133527.
  • Ritchie H. 1988. Application of the semi-Lagrangian method to a spectral model of the shallow-water equations. Mon. Weather Rev. 116: 15871598.
  • Salmon R. 1998. Lectures on Geophysical Fluid Dynamics. Oxford University Press: New York, NY.
  • Sankey D, Ren S, Polavarapu S, Rochon Y, Nezlin Y, Beagley S. 2007. Impact of data assimilation filtering methods on the mesosphere. J. Geophys. Res. 112D24 104118.
  • Shutts GJ. 2005. A stochastic kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131: 30793102.
  • Simon DJ. 2006. Optimal State Estimation. John Wiley & Sons: New York, NY.
  • Skamarock WC, Klemp JB. 1992. The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Mon. Weather Rev. 120: 21092127.
  • Takacs LL. 1996. ‘A simple bias correction algorithm for use in data assimilation’. DAO Office Note 96-25. Goddard Space Flight Center: Greenbelt, MD.
  • Talagrand O, Vautard R, Strauss B. 1997. Evaluation of probabilistic prediction systems. In: Proceedings of the Workshop on Predictability. ECMWF: Reading, UK.
  • Thuburn J. 2008. Some conservation issues for the dynamical cores of NWP and climate models. J. Comput. Phys. 227 37153730.
  • Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS. 2003. Ensemble square root filters. Mon. Weather Rev. 131 14851490.
  • Toth Z, Kalnay E. 1993. Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteorol. Soc. 74: 23172330.
  • Wang X, Bishop CH, Julier SJ. 2004. Which is better, an ensemble of positive–negative pairs or a centered spherical simplex ensemble? Mon. Weather Rev. 132: 15901505.
  • Whitaker JS, Compo GP, Wei X, Hamill TM. 2004. Reanalysis without radiosondes using ensemble data assimilation. Mon. Weather Rev. 132: 11901200.
  • Whitaker JS, Compo GP, Thépaut J-N. 2009. A comparison of variational and ensemble-based data assimilation systems for reanalysis of sparse observations. Mon. Weather Rev. 137: 19911999.