SEARCH

SEARCH BY CITATION

References

  • Aonashi K, Eito H. 2011. Displaced ensemble variational assimilation method to incorporate microwave imager brightness temperatures into a cloud-resolving model. J. Meteorol. Soc. Jpn 89: 175194.
  • Auligné T, McNally AP. 2007. Interaction between bias correction and quality control. Q. J. R. Meteorol. Soc. 133: 643653.
  • Bauer P, Geer AJ, Lopez P, Salmond D. 2010. Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Q. J. R. Meteorol. Soc. 136: 18681885.
  • Bauer P, Ohring G, Kummerow C, Auligné T. 2011a. Assimilating satellite observations of clouds and precipitation into NWP models. Bull. Am. Meteorol. Soc. 92: ES25ES28.
  • Bauer P, Auligné T, Bell W, Geer AJ, Guidard V, Heilliette S, Kazumori M, Kim M-J, Liu EH-C, McNally AP, Macpherson B, Okamoto K, Renshaw R, Riishøjgaard L-P. 2011b. Satellite cloud and precipitation assimilation at operational NWP centres. Q. J. R. Meteorol. Soc. 137: 19341951.
  • Berger H. 2004. ‘Satellite wind superobbing’. EUMETSAT NWP SAF Visiting Scientist Report, NWPSAF-MO-VS-016, http://www.ssec.wisc.edu/∼howardb/Papers/superob_nwpsaf_final.pdf.
  • Errico RM, Bauer P, Mahfouf J-F. 2007. Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci. 64: 37853798.
  • Eyre JR, Menzel WP. 1989. Retrieval of cloud parameters from satellite sounder data: A simulation study. J. Appl. Meteorol. 28: 267275.
  • Geer AJ, Bauer P. 2010. Enhanced use of all-sky microwave observations sensitive to water vapour, cloud and precipitation. ECMWF Tech. Memo. 620, 41 pp.
  • Geer AJ, Bauer P, Lopez P. 2010. Direct 4D-Var assimilation of all-sky radiances. Part II: Assessment. Q. J. R. Meteorol. Soc. 136: 18861905.
  • Greenwald TJ, Hertenstein R, Vukićević T. 2002. An all-weather observational operator for radiance data assimilation with mesoscale forecast models. Mon. Weather Rev. 130: 18821897.
  • Heilliette S, Garand L. 2007. A practical approach for the assimilation of cloudy infrared radiances and its evaluation using AIRS simulated observations. Atmos.–Ocean 45: 211225.
  • Ishibashi T. 2010. ‘Optimization of error covariance matrices and estimation of observation data impact in the JMA global 4D-Var system’. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling 40: 1.11–1.12.
  • Jakob C, Klein SA. 1999. The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model. Q. J. R. Meteorol. Soc. 125: 941965.
  • Japan Meteorological Agency. 2003. ‘HRIT mission specific implementation’. http://www.jma.go.jp/jma/jma-eng/satellite/mtsat1r/4.2HRIT_1.pdf.
  • Japan Meteorological Agency. 2007. ‘Outline of the operational numerical weather prediction at the Japan Meteorological Agency’. http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-nwp/index.htm.
  • Köpken C, Kelly G, Thépaut J-N. 2004. Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Assimilation experiments and forecast impact. Q. J. R. Meteorol. Soc. 130: 22772292.
  • Lopez P, Ryu G-H, Sohn B-J, Davies L, Jakob C, Bauer P. 2011. Specification of rain gauge representativity error for data assimilation. ECMWF Tech. Memo. 647, 22 pp.
  • Lupu C, McNally A. 2012. Assimilation of cloud-affected radiances from Meteosat-9 at ECMWF. EUMETSAT/ECMWF Fellowship Programme Research Reports No.25, 33 pp.
  • McNally AP. 2009. The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var. Q. J. R. Meteorol. Soc. 135: 12141229.
  • Matricardi M. 2005. The inclusion of aerosols and clouds in RTIASI, the ECMWF fast radiative transfer model for the infrared atmospheric sounding interferometer. ECMWF Tech. Memo. 474, 53 pp.
  • Matricardi M, Chevallier F, Kelly G, Thépaut J-N. 2004. An improved general fast radiative transfer model for the assimilation of radiance observations. Q. J. R. Meteorol. Soc. 130: 153173.
  • Menzel WP, Frey RA, Zhang H, Wylie DP, Moeller CC, Holz RE, Maddux B, Baum BA, Strabala KI, Gumley LE. 2008. MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteorol. Clim. 47: 11751198.
  • Okamoto K, Owada H, Egawa T, Ishibashi T. 2008. ‘Assimilation of radiance data at JMA: Recent developments and prospective plans’. In Proceedings of the 16th International TOVS study conference, Angra dos Reis, Brazil, 713 May 2008. CIMSS, Univ. Wisconsin: Madison, USA.
  • Pangaud T, Fourrie N, Guidard V, Dahoui M, Rabier F. 2009. Assimilation of AIRS radiances affected by mid- to low-level clouds. Mon. Weather Rev. 137: 42764292.
  • Pavelin EG, English SJ, Eyre Jr. 2008. The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction. Q. J. R. Meteorol. Soc. 134: 737749.
  • Peubey C, McNally AP. 2009. Characterization of the impact of geostationary clear-sky radiances on wind analyses in a 4D-Var context. Q. J. R. Meteorol. Soc. 135: 18631876.
  • Puschell JJ, Osgood R, Auchter J, Hurt Jr WT, Hitomi M, Sasaki M, Tahara Y, Tadros A, Faller K, Mclaren M, Sheffield J, Gaiser J, Kamel A, Gunshor M. 2006. In-flight performance of the Japanese Advanced Meteorological Imager. Proc. SPIE 6296: 62960N(2006), DOI: 10.1117/12.683505.
  • Saunders R, Matricardi M, Brunel P. 1999. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorol. Soc. 125: 14071425.
  • Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang Z, Illingworth AJ, O'Connor EJ, Rossow WB, Durden SL, Miller SD, Austin RT, Benedetti A, Mitrescu C, The CloudSat Science Team. 2002. The CloudSat mission and the A-Train. Bull. Am. Meteorol. Soc. 83: 17711790.
  • Uesawa D. 2009. Clear sky radiance (CSR) product from MTSAT-1R. Meteorological Satellite Center Technical Note 52: 3948.