SEARCH

SEARCH BY CITATION

References

  • Bannister RN. 2008a. A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances. Q. J. R. Meteorol. Soc. 134: 19511970.
  • Bannister RN. 2008b. A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics. Q. J. R. Meteorol. Soc. 134: 19711996.
  • Belo-Pereira M, Berre L. 2006. The use of an ensemble approach to study the background error covariances in a global NWP. Mon. Weather Rev. 134: 24662489.
  • Benjamin SG. 1989. An isentropic mesoα-scale analysis system and its sensitivity to aircraft and surface observations. Mon. Weather Rev. 117: 15861603.
  • Berre L. 2000. Estimation of synoptic and mesoscale forecast error covariances in a limited-area model. Mon. Weather Rev. 138: 644667.
  • Berre L, Desroziers G. 2010. Filtering of background error variances and correlations by local spatial averaging: A review. Mon. Weather Rev. 138: 36933720.
  • Boer G. 1983. Homogeneous and isotropic turbulence on the sphere. J. Atmos. Sci. 40: 154163.
  • Bouttier F. 1994. A dynamical estimation of forecast error covariances in an assimilation system. Mon. Weather Rev. 122: 23762390.
  • Bouttier F. 1996. ‘Application of Kalman filtering to numerical weather prediction’. In ECMWF Seminar on Data Assimilation. ECMWF: Reading, UK; pp 6190.
  • Clerc M, Mallat S. 2002. The texture gradient equation for recovering shape from texture. IEEE Trans. Pattern Anal. Machine Intelligence 24: 536549.
  • Clerc M, Mallat S. 2003. Estimating deformations of stationary processes. Ann. Statist. 31: 17721821.
  • Courtier P, Andersson E, Heckley W, Vasiljevic D, Hamrud M, Hollingsworth A, Rabier F, Fisher M, Pailleux J. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Q. J. R. Meteorol. Soc. 124: 17831807.
  • Courtier P, Thépaut JN, Hollingsworth A. 1994. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 120: 13671387.
  • Daley R. 1993. Atmospheric data analysis. Cambridge University Press: Cambridge, UK.
  • Deckmyn A, Berre L. 2005. A wavelet approach to representing background error covariances in a limited-area model. Mon. Weather Rev. 133: 12791294.
  • Dee DP. 1995. On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Weather Rev. 123: 11281145.
  • Derber J, Bouttier F. 1999. A reformulation of the background-error covariance in the ECMWF global data assimilation system. Tellus 51A: 195221.
  • Desroziers G. 1997. A coordinate change for data assimilation in spherical geometry of frontal structures. Mon. Weather Rev. 125: 30303038.
  • Evensen G. 2003. The Ensemble Kalman Filter: Theoretical formulation and practical implementation. Ocean Dynamics 53: 343367.
  • Farge M. 1992. Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Mech. 24: 395458.
  • Fisher M. 2003. ‘Background error covariance modelling’. In ECMWF Seminar on recent developments in data assimilation for atmosphere and ocean. ECMWF: Reading, UK; pp 4563.
  • Fisher M. 2004. ‘Generalized frames on the sphere, with application to the background-error covariance modelling’. In Proceedings of ECMWF Seminar on developments in numerical methods for atmospheric and ocean modelling. ECMWF: Reading, UK; pp 87101.
  • Gårding J. 1992. Shape from texture for smooth curved surfaces in perspective projection. J. Mathematical Imaging and Vision 2: 630638.
  • Gaspari G, Cohn S. 1999. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125: 723757.
  • Gauthier P, Charette C, Fillion L, Koclas P, Laroche S. 1999. Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part I: The global analysis. Atmos.–Ocean 37: 103156.
  • Hamill T, Whitaker J, Snyder C. 2001. Distance-dependent filtering of background error covariance estimates in an Ensemble Kalman Filter. Mon. Weather Rev. 129: 27762790.
  • Hamill TM, Snyder C. 2000. A hybrid ensemble Kalman Filter–3D variational analysis scheme. Mon. Weather Rev. 128: 29052919.
  • Heitz D, Mémin E, Schnörr C. 2010. Variational fluid flow measurements from image sequences: synopsis and perspectives. Exp. Fluids 48: 369393.
  • Hoskins B. 1975. The geostrophic momentum approximation and the semi-geostrophic equations. J. Atmos. Sci. 32: 233242.
  • Kanatani K, Chou TC. 1989. Shape from texture: General principle. Artificial Intelligence 38: 148.
  • Kendall SM, Stuart A. 1977. The Advanced Theory of Statistics, Vol. 1: Distribution Theory. C. Griffin and Co.: London and High Wycombe.
  • Lorenc AC. 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112: 11771194.
  • Lorenc AC. 1997. Development of an operational variational assimilation scheme. J. Meteorol. Soc. Jpn 75: 339346.
  • Malik J, Rosenholtz R. 1997. Computing local surface orientation and shape from texture for curved surfaces. Int. J. Comput. Vision 23: 149168.
  • Mallat S. 1999. A wavelet tour of signal processing, 2nd edn. Academic Press: New York.
  • Mallat S, Papanicolaou G, Zhang Z. 1998. Adaptive covariance estimation of locally stationary processes. Ann. Statistics 26: 147.
  • McNally AP. 2002. A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders. Q. J. R. Meteorol. Soc. 128: 25512556.
  • Michel Y, Auligné T. 2010. Inhomogeneous background error modeling and estimation over Antarctica. Mon. Weather Rev. 138: 22292252.
  • Mirouze I, Weaver A. 2010. Representation of correlation functions in variational assimilation using an implicit diffusion operator. Q. J. R. Meteorol. Soc. 136: 14211443.
  • Muirhead RJ. 2008. Samples from a Multivariate Normal Distribution, and the Wishart and Multivariate Beta Distributions. In Aspects of Multivariate Statistical Theory. John Wiley & Sons, Inc: Hoboken, NJ; 79120.
  • Pannekoucke O, Berre L, Desroziers G. 2007. Filtering properties of wavelets for local background-error correlations. Q. J. R. Meteorol. Soc. 133: 363379.
  • Parrish D, Derber J. 1992. The National Meteorological Center's Spectral Statistical-Interpolation analysis system. Mon. Weather Rev. 120: 17471763.
  • Perrin O, Senoussi R. 1999. Reducing non-stationary stochastic processes to stationarity by a time deformation. Statist. Probab. Lett. 43: 393397.
  • Purser R, Pondeca SD, Parrish D, Dévényi D. 2007. ‘Covariance modelling in a grid-point analysis’. In Proceedings of the ECMWF Workshop on flow-dependent aspects of dataY assimilation. ECMWF: Reading, UK; pp 1125.
  • Purser R, Wu W, Parrish D, Roberts N. 2003a. Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Weather Rev. 131: 15241535.
  • Purser R, Wu W, Parrish D, Roberts N. 2003b. Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Weather Rev. 131: 15361548.
  • Rasmussen CE, Williams C. 2006. Gaussian processes for machine learning. MIT Press: Cambridge, MA.
  • Sampson PD, Guttorp P. 1992. Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc. 87: 108119.
  • Smith J. 2007. Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications, 2nd edn. W3K Publishing: Stanford, CA.
  • Sorensen DC. 2002. Numerical methods for large eigenvalue problems. Acta Numerica 11: 519584.
  • Stein M. 1999. Statistical interpolation of spatial data: Some theory for kriging. Springer: New York, NY.
  • Weaver A, Courtier P. 2001. Correlation modelling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc. 127: 18151846.
  • Yessad K, Bénard P. 1995. Introduction of a local mapping factor in the spectral part of the Météo-France global variable mesh numerical forecast model. Q. J. R. Meteorol. Soc. 122: 17011719.