• perturbed boundary layer;
  • turbulence structure;
  • low wind;
  • urban turbulence


An analysis of the turbulence structure in a perturbed boundary layer and in low-wind regimes is presented. The study is based on 15 months of continuous wind and turbulence measurements gathered, within the framework of the Urban Turbulence Project, at three levels (5, 9 and 25 m) on a mast located in the outskirts of the city of Turin (Italy). The aim of the work is to investigate low-frequency processes in a perturbed boundary-layer. In fact, the urban canopy and the heat island, together with frequent low-wind conditions, interact with and modify the turbulence structure. In order to investigate this modification, the velocity Eulerian autocorrelation functions together with both the Eulerian and Lagrangian time-scales are shown and compared with the classical theory. The comparisons show that in low-wind cases the velocity autocorrelation functions are not simply exponential but present an oscillating behaviour. A method of normalization is proposed together with an analysis on the applicability of this function. The estimated Lagrangian time-scales are compared with two widely used parametrizations. It is found that the presence of the urban fabric influences the turbulence time-scales and suggests the development of new parametrizations. Finally, higher-order statistics are evaluated and the relationship between higher-order and lower-order moments are analysed, pointing out the effects due to the urban environment. Copyright © 2012 Royal Meteorological Society