SEARCH

SEARCH BY CITATION

References

  • Aksoy A, Zhang FQ, Nielsen-Gammon JW. 2006a. Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett. 33: L12801, DOI: 10.1029/2006GL026186.
  • Aksoy A, Zhang FQ, Nielsen-Gammon JW. 2006b. Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Weather Rev. 134: 29512970.
  • AMIP Project Office. 1996. ‘AMIP II guidelines.’ AMIP Newsletter 8. Lawrence Livermore National Laboratory, Livermore, California, USA. Available at http://www-pcmdi.llnl.gov/projects/amip/NEWS/amipnl8.php.
  • Berner J, Jung T, Palmer TN. 2012. Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Climate 25: 49464962.
  • Betts AK, Ball JH, Viterbo P. 2003. Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. J. Hydrometeorol. 4: 11941211.
  • Bowler NE, Arribas A, Mylne KR, Robertson KB, Beare SE. 2008. The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134: 703722.
  • Fisher M. 2006. ‘Optimizing data assimilation for re-analysis.’ Pp 6972 in Proceedings of the ECMWF/GEO Workshop on Atmospheric reanalysis, 1922 June 2006. Available on-line at http://www.ecmwf.int/publications.
  • Haario H, Laine M, Mira A, Saksman E. 2006. DRAM: Efficient adaptive MCMC. Stat. Comput. 16: 339354.
  • Hacker JP, Snyder C, Ha S-Y, Pocernich M. 2011. Linear and non-linear response to parameter variations in a mesoscale model. Tellus 63A: 429444.
  • Järvinen H, Räisänen P, Laine M, Tamminen J, Ilin A, Oja E, Solonen A, Haario H. 2010. Estimation of ECHAM5 climate model closure parameters with adaptive MCMC. Atmos. Chem. Phys. 10: 999310002.
  • Järvinen H, Laine M, Solonen A, Haario H. 2012. Ensemble prediction and parameter estimation system: The concept. Q. J. R. Meteorol. Soc. 138: 281288.
  • Klocke D, Pincus R, Quaas J. 2011. On constraining estimates of climate sensitivity with present-day observations through model weighting. J. Climate 24: 60926099.
  • Laine M, Solonen A, Haario H, Järvinen H. 2012. Ensemble prediction and parameter estimation system: The method. Q. J. R. Meteorol. Soc. 138: 289297.
  • Leutbecher M, Palmer TN. 2008. Ensemble forecasting. J. Comput. Phys. 227: 35153539.
  • Lin JW-B, Neelin JD. 2000. Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett. 27: 36913694.
  • Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong TM. 2009. Toward optimal closure of the Earth's top-of-atmosphere radiation budget. J. Climate 22: 748766.
  • Lorenz EN. 1995. ‘Predictability: A problem partly solved.’ Pp 118 in Proceedings of the Seminar on Predictability, Vol. 1, 48 September 1995, ECMWF, Reading, UK. Available at www.ecmwf.int/publications.
  • Neelin JD, Bracco A, Luo H, McWilliams JC, Meyerson JE. 2010. Considerations for parameter optimization and sensitivity in climate models. Proc. Natl. Acad. Sci. USA 107: 2134921354.
  • Nielsen-Gammon JW, Hu X-M, Zhang FQ, Pleim JE. 2010. Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation. Mon. Weather Rev. 138: 34003417.
  • Reynolds CA, Ridout JA, McLay JG. 2011. Examination of parameter variations in the U.S. Navy global ensemble. Tellus 63A: 841857.
  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A. 2003. The atmospheric general circulation model ECHAM5, Part I: Model description.’ Tech. Rep. No. 349, Max-Planck-Institut für Meteorologie.
  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U. 2006. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate 19: 37713791.
  • Rossow WB, Dueñas EN. 2004. The International Satellite Cloud Climatology Project (ISCCP) web site: An online resource for research. Bull. Am. Meteorol. Soc. 85: 167172.
  • Rossow WB, Walker AW, Roiter MD. 1996. International Satellite Cloud Climatology Project (ISCCP) documentation of new cloud datasets.’ Tech. Rep. WMO/TD-737 349, World Meteorological Organization.
  • Savijärvi H. 1995. Error growth in a large numerical forecast system. Mon. Weather Rev. 123: 212221.
  • Stensrud DJ. 2007. Parameterization Schemes: Keys to understanding numerical weather prediction models. Cambridge University Press.
  • Trenberth KE, Guillemot CJ. 1998. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Clim. Dyn. 14: 213231.
  • Wilks DS. 2005. Effects of stochastic parametrizations in the Lorenz '96 system. Q. J. R. Meteorol. Soc. 131: 389407.
  • Zhu YQ, Navon IM. 1999. Impact of parameter estimation on the performance of the FSU global spectral model using its full-physics adjoint. Mon. Weather Rev. 127: 14971517.