SEARCH

SEARCH BY CITATION

References

  • Abdul-Razzak H, Ghan SJ. 2000. A parameterization of aerosol activation. 2. Multiple aerosol types. J. Geophys. Res. 105D5 68376844. DOI:10.1029/1999JD901161.
  • d'Almeida GA. 1987. On the variability of desert aerosol radiative characteristics. J. Geophys. Res 92D3 30173026. DOI:10.1029/JD092iD03p03017.
  • Cagnazzo C, Manzini E, Giorgetta MA, Forster PM de F, Morcrette JJ. 2007. Impact of an improved shortwave radiation scheme in the MAECHAM5 general circulation model. Atmos. Chem. Phys. 7: 25032515. DOI:10.5194/acp-7-2503-2007.
  • Cheng T, Peng Y, Feichter J, Tegen I. 2008. An improvement on the dust emission scheme in the global aerosol–climate model ECHAM5-HAM. Atmos. Chem. Phys. 8: 11051117. DOI:10.5194/acp-8-1105-2008.
  • Chung CE, Ramanathan V, Decremer D. 2012. Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc. Natl. Acad. Sci. 109: 1162411629. DOI: 10.1073/pnas.1203707109.
  • Dubovik O, Holben B, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanré D, Slutsker I. 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 59: 590608. DOI: 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2.
  • Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mischenko M, Yang P, Eck TF, Volten H, Muñoz O, Veihelmann B, van der Zande WJ, Leon J-F, Sorokin M, Slutsker I. 2006. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. 111: D11208. DOI:10.1029/2005JD006619.
  • Fu Q, Thorsen TJ, Su J, Ge JM, Huang JP. 2009. Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations. J. Quant. Spectrosc. Radiative Transfer 110: 16401653. DOI:10.1016/j.jqsrt.2009.03.010.
  • Grenfell TC, Warren SG. 1999. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation. J. Geophys. Res. 104: 3169731709.
  • Haapanala P, Räisänen P, Kahnert M, Nousiainen T. 2012. Sensitivity of the shortwave radiative effect of dust on particle shape: comparison of spheres and spheroids. J. Geophys. Res. 117: D08201. DOI:10.1029/2011JD017216.
  • Hansell RA, Tsay SC, Ji Q, Hsu NC, Jeong MJ, Wang SH, Reid JS, Liou KN, Ou SC. 2010. An assessment of the surface longwave direct radiative effect of airborne Saharan dust during the NAMMA field campaign. J. Atmos. Sci. 67: 10481065. DOI: 10.1175/2009JAS3257.1.
  • Hansen JE, Sato M, Lacis A, Ruedy R, Tegen I, Matthews E. 1998. Climate forcings in the industrial era. Proc. Natl. Acad. Sci. 95: 1275312758. DOI: 10.1073/pnas.95.22.12753.
  • Kahnert M, Kylling A. 2004. Radiance and flux simulations for mineral dust aerosols: Assessing the error due to using spherical or spheroidal model particles. J. Geophys. Res. 109: D09203. DOI:10.1029/2003JD004318.
  • Kahnert M, Nousiainen T. 2006. Uncertainties in measured and modelled asymmetry parameters of mineral dust aerosols. J. Quant. Spectrosc. Radiative Transfer 100: 173178. DOI:10.1016/j.jqsrt.2005.11.035.
  • Kahnert M, Nousiainen T, Räisänen P. 2007. Mie simulations as an error source in mineral aerosol radiative forcing calculations. Q. J. R. Meteorol. Soc. 133: 299307. DOI: 10.1002/qj.40.
  • Kalashnikova OVK, Kahn R, Sokolik IN, Li W-H. 2005. Ability of multiangle remote sensing of observations to identify and distinguish mineral dust types: Optical models and retrieval of optically thick plumes. J. Geophys. Res. 110: D18S14. DOI:10.1029/2004JD004550.
  • Kärcher B, Lohmann U. 2002. A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res. 107D2 4010. DOI:10.1029/2001JD000470.
  • Kinne S, Lohmann U, Feichter J, Schulz M, Timmreck C, Ghan S, Easter R, Chin M, Ginoux P, Takemura T, Tegen I, Koch D, Herzog M, Penner J, Pitari G, Holben B, Eck T, Smirnov A, Dubovik O, Slutsker I, Tanre D, Torres O, Mishchenko M, Geogdzhayev I, Chu DA, Kaufman Y. 2003. Monthly averages of aerosol properties: A global comparison among models, satellite data and AERONET ground data. J. Geophys. Res. 108D20 4634. DOI:10.1029/2001JD001253a.
  • Kinne S, Schulz M, Textor C, Guibert S, Balkanski Y, Bauer SE, Berntsen T, Berglen TF, Boucher O, Chin M, Collins W, Dentener F, Diehl T, Easter R, Feichter J, Fillmore D, Ghan S, Ginoux P, Gong S, Grini A, Hendricks J, Herzog M, Horowitz L, Isaksen I, Iversen T, Kirkevåg A, Kloster S, Koch D, Kristjansson JE, Krol M, Lauer A, Lamarque JF, Lesins G, Liu X, Lohmann U, Montanaro V, Myhre G, Penner J, Pitari G, Reddy S, Seland O, Stier P, Takemura T, Tie X. 2006. An AeroCom initial assessment—optical properties in aerosol component modules of global models. Atmos. Chem. Phys. 6: 18151834. DOI:10.5194/acp-6-1815-2006.
  • Lohmann U, Stier P, Hoose C, Ferrachat S, Kloster S, Roeckner E, Zhang J. 2007. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM. Atmos. Chem. Phys. 7: 34253446. DOI:10.5194/acp-7-3425-2007.
  • Merikallio S, Lindqvist H, Nousiainen T, Kahnert M. 2011. Modeling light scattering by mineral dust using spheroids: Assesment of applicability. Atmos. Chem. Phys. 11: 53475363. DOI:10.5194/acp-11-5347-2011.
  • Mishchenko MI, Lacis AA, Carlson BE, Travis LD. 1995. Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modelling. Geophys. Res. Lett. 22: 10771080. DOI: 10.1029/95GL00798.
  • Mishchenko MI, Travis LD, Kahn RA, West RA. 1997. Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res. 102D14 1683116847. DOI:10.1029/96JD02110.
  • Mishchenko MI, Geogdzhayev IV, Liu L, Ogren JA, Lacis AA, Rossow WB, Hovenier JW, Volten H, Muñoz O. 2003. Aerosol retrievals from AVHRR radiances: Effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties. J. Quant. Spectrosc. Radiative Transfer 79–80: 953972. DOI:10.1016/S0022-4073(02)00331-X.
  • Myhre G, Stordal F. 2001. Global sensitivity experiment of the radiative forcing due to mineral aerosols. J. Geophys. Res. 106D16 1819318204. DOI: 10.1029/2000JD900536.
  • Neshyba SP, Grenfell TC, Warren SG. 2003. Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: II. Hexagonal columns and plates. J. Geophys. Res. 108D15 4448. DOI:10.1029/2002JD003302.
  • Nousiainen T. 2009. Optical modeling of mineral dust particles. A review. J. Quant. Spectrosc. Radiative Transfer 110: 12611279. DOI:10.1016/j.jqsrt.2009.03.002.
  • Nousiainen T, Kahnert M, Veihelmann B. 2006. Light scattering modeling of small feldspar aerosol particles using polyhedral prism and spheroids. J. Quant. Spectrosc. Radiative Transfer 101: 471487. DOI: 10.1016/j.jqsrt.2006.02.038.
  • Nousiainen T, Vermeulen K. 2003. Comparison of measured single-scattering matrix of feldspar particles with T-matrix simulations using spheroids. J. Quant. Spectrosc. Radiative Transfer 79–80: 10311041. DOI: 10.1016/S0022-4073(02)00337-0.
  • O'Donnell D, Tsigaridis K, Feichter J. 2011. Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5-HAM. Atmos. Chem. Phys. 11: 86358659. DOI:10.5194/acp-11-8635-2011.
  • Räisänen P, Järvenoja S, Järvinen H. 2008. Noise due to the Monte Carlo independent-column approximation: short-term and long-term impacts in ECHAM5. Q. J. R. Meteorolol. Soc. 134: 481495. DOI: 10.1002/qj.231.
  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D. 2001. Aerosols, climate, and the hydrological cycle. Science 294: 21192124. DOI:10.1126/science.1064034.
  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Koernblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A. 2003. ‘The atmospheric general circulation model ECHAM5. Part I: Model description’, Rep. 349, 127 pp. Max Planck Institute for Meteorology: Hamburg, Germany.
  • Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Koernblueh L, Manzini E, Schlese U, Schulzweida U. 2006. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Climate 19: 37713791. DOI: 10.1175/JCLI9023.1.
  • Sabbah I, Ichoku C, Kaufman YJ, Kaufman LR. 2001. Full year cycle of desert dust spectral optical thickness and precipitable water vapor over Alexandria, Egypt. J. Geophys. Res. 106D16 1830518316. DOI:10.1029/2000JD900410.
  • Sokolik IN, Toon OB. 1996. Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381: 681683. DOI:10.1038/381681a0.
  • Sokolik IN, Toon OB. 1999. Incorporation of minearological composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. 104D8 94239444. DOI:10.1029/1998JD200048.
  • Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Balkanski Y, Schulz M, Boucher O, Minikin A, Petzold A. 2005. The aerosol–climate model ECHAM5-HAM. Atmos. Chem. Phys. 5: 11251156. DOI:10.5194/acp-5-1125-2005.
  • Tegen I, Harrison SP, Kohfeld K, Prentice IC, Coe M, Heimann M. 2002. Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. J. Geophys. Res. 107D21 4576. DOI:10.1029/2001JD000963.
  • Vignati E, Wilson J, Stier P. 2004. M7: An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J. Geophys. Res. 109: D22202. DOI:10.1029/2003JD004485.
  • Volten H, Muñoz O, Rol E, de Haan JF, Vassen W, Hovenier JW, Muinonen K, Nousiainen T. 2001. Scattering matrices of mineral aerosol particles at 441.6 and 632.8 nm. J. Geophys. Res. 106D15 1737517401. DOI:10.1029/2001JD900068.
  • Weinzierl B, Petzold A, Esselborn M, Wirth M, Rasp K, Kandler K, Schütz L, Koepke P, Fiebig M. 2009. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus 61B: 96117. DOI: 10.1111/j.1600-0889.2008.00392.x.
  • Yi B, Hsu CN, Yang P, Tsay S-C. 2011. Radiative transfer simulation of dust-like aerosols: Uncertainties from particle shape and refractive index. J. Aerosol. Sci. 42: 631644. DOI: 10.1016/j.jaerosci.2011.06.008.
  • Zhang K, O'Donnell D, Kazil J, Stier P, Kinne S, Lohmann U, Ferrachat S, Croft B, Quaas J, Wan H, Rast S, Feichter J. 2012. The global aerosol–climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations. Atmos. Chem. Phys. 12: 89118949. DOI:10.5194/acp-12-8911-2012.