SEARCH

SEARCH BY CITATION

References

  • Baker W, Bloom S, Woollen J, Nestler M, Brin E, Schlatter T, Branstator G. 1987. Experiments with a three-dimensional statistical objective analysis scheme using FGGE data. Mon. Weather Rev. 115: 272296.
  • Belo Pereira M, Berre L. 2006. The use of an ensemble approach to study the background-error covariances in a global NWP model. Mon. Weather Rev. 134: 24662489.
  • Bouttier F. 1993. The dynamics of error covariances in a barotropic model. Tellus 45A: 408423.
  • Buehner M. 2005. Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting. Q. J. R. Meteorol. Soc. 131: 10131043.
  • Fisher M, Courtier P. 1995. ‘Estimating the covariance matrices of analysis and forecast error in variational data assimilation’. Technical Memorandum 220, ECMWF: Reading, UK.
  • Courtier P, Geleyn JF. 1988. A global numerical weather prediction model with variable resolution: Application to the shallow-water equations. Q. J. R. Meteorol. Soc. 114: 13211346.
  • Courtier P, Andersson E, Heckley W, Pailleux J, Vasiljević D, Hamrud M, Hollingsworth A, Rabier F, Fisher M. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Q. J. R. Meteorol. Soc. 124: 17831807.
  • Daley R. 1991. Atmospheric Data Analysis. Cambridge University Press.
  • Deckmyn A, Berre L. 2005. A wavelet approach to representing background error covariances in a LAM. Mon. Weather Rev. 133: 12791294.
  • Fisher RA. 1953. On the ‘probable error’ of a coefficient of correlation deduced from a small sample. Metron, 1: 132.
  • Fisher M. 2003. ‘Background error covariance modelling’. Pp. 4563 in Proceedings of Seminar on recent developments in data assimilation for atmosphere and ocean, 8–12 September 2003. ECMWF: Reading, UK.
  • Gaspari G, Cohn S. 1999. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125: 723757.
  • Hollingsworth A. 1987. Short- and medium-range numerical weather prediction. Collection of papers presented at the WMO/IUGG symposium, Tokyo, 4–8 August 1986.
  • Houtekamer PL, Lefaivre L, Derome J, Ritchie H, Mitchell HL. 1996. A system simulation approach to ensemble prediction. Mon. Weather Rev. 124: 12251242.
  • Houtekamer PL, Mitchell HL. 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129: 123137.
  • Hotelling H. 1953. New light on the correlation coefficient and its transforms. J. R. Statist. Soc. series B (Methodological), 15: 193232.
  • Ingleby B. 2001. The statistical structure of forecast errors and its representation in the Met. Office Global Model. Q. J. R. Meteorol. Soc. 124: 17831807.
  • Kalnay E. 2002. Atmospheric modeling, data assimilation and predictability. Cambridge University Press.
  • Kendall M, Stuart A, Ord JK. 1998. Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory. Hodder Arnold.
  • Pannekoucke O, Berre L, Desroziers G. 2007. Filtering properties of wavelets for local background-error correlations. Q. J. R. Meteorol. Soc. 133: 363379.
  • Rabier F, McNally A, Andersson E, Courtier P, Undén P, Eyre J, Hollingsworth A, Bouttier F. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions. Q. J. R. Meteorol. Soc. 124: 18091829.
  • Rabier F, Järvinen H, Klinker E, Mahfouf JF, Simmons A. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc. 126: 11481170.
  • Veersé F, Thépaut J-N. 1998. Multiple-truncation incremental approach for four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc. 124: 18891908.