SEARCH

SEARCH BY CITATION

References

  • Belo Pereira M, Berre L. 2006. The use of an ensemble approach to study the background error covariances in a global NWP model. Mon. Weather Rev. 134: 24662489.
  • Berre L, Pannekoucke O, Desrozier G, Stefanescu S, Chapnik B, Raynaud L. 2007. ‘A variational assimilation ensemble and the spatial filtering of its error covariances: increase of sample size by local spatial averaging’. Pp 151168 in Proceedings of workshop on flow-dependent aspects of data assimilation, 11–13 June 2007. ECMWF: Reading, UK.
  • Boyd JP. 2001. Chebyshev and Fourier Spectral Methods. Dover .
  • Bouttier F. 1994. A dynamical estimation of error covariances in an assimilation system. Mon. Weather Rev. 122: 23762390.
  • Buis S, Piacentini A, Déclat D. 2006. PALM: A computational framework for assembling high-performance computing applications. Concurr. Comp. Pract. E. 18(2): 247262.
  • Cariolle D, Teyssèdre H. 2007. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: Multi-annual simulations. Atmos. Chem. Phys. 7: 21832196.
  • Courtier P, Andersson E, Heckley W, Pailleux J, Vasiljević D, Hamrud M, Hollingsworth A, Rabier F, Fisher M. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Q. J. R. Meteorol. Soc. 124: 17831807.
  • Daley R. 1991. Atmospheric Data Analysis. Cambridge University Press: Cambridge, UK.
  • Derber J, Rosati A. 1989. A global oceanic data assimilation system. J. Phys. Oceanogr. 19(9): 13331347.
  • Dufour A, Amodei M, Ancellet G, Peuch V-H. 2004. Observed and modelled ‘chemical weather’ during ESCOMPTE. Atmos. Res. 74: 161189.
  • Egbert GD, Bennett AF, Foreman MGG. 1994. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 99: 2482124852.
  • Fisher M, Courtier P. 1995. ‘Estimating the covariance matrices of analysis and forecast error in variational data assimilation’. Technical Memo. 220. ECMWF: Reading, UK.
  • Fisher M, Anderson E. 2001. ‘Developments in 4D-Var and Kalman Filtering’. Technical Memo. 347. ECMWF: Reading, UK.
  • Fisher M. 2003. ‘Background-error covariance modelling’. Pp 4563 in Procedings of the seminar on recent developments in data assimilation for atmosphere and ocean, 8–12 September 2003. ECMWF: Reading, UK.
  • Gaspari G, Cohn S. 1999. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125: 723757.
  • Geer AJ, Lahoz WA, Bekki S, Bormann N, Errera Q, Eskes HJ, Fonteyn D, Jackson DR, Juckes MN, Massart S, Peuch V-H, Rharmili S, Segers A. 2006. The ASSET intercomparison of ozone analyses: Method and first results. Atmos. Chem. Phys. 6: 54455474.
  • Gneiting T. 1999a.. Isotropic correlation functions on d-dimensional balls. Adv. Appl. Prob. 31: 625631.
  • Gneiting T. 1999b.. Correlation functions for atmospheric data analysis. Q. J. R. Meteorol. Soc. 125: 24492464.
  • Houtekamer PL, Lefaivre L, Derome J, Ritchie H, Mitchell HL. 1996. A system simulation approach to ensemble prediction. Mon. Weather Rev. 124: 12251242.
  • Kalnay E. 2002. Atmospheric modeling, data assimilation and predictability. Cambridge University Press: Cambridge, UK.
  • Lahoz WA, Geer AJ, Bekki S, Bormann N, Ceccherini S, Elbern H, Errera Q, Eskes HJ, Fonteyn D, Jackson DR, Khattatov B, Marchand M, Massart S, Peuch V-H, Rharmili S, Ridolfi M, Segers A, Talagrand O, Thornton HE, Vik AF, von Clarmann T. 2007. The assimilation of Envisat data (ASSET) project. Atmos. Chem. Phys. 7: 17731796.
  • Liu H, Xue M, Purser RJ, Parrish DF. 2007. Retrieval of moisture from simulated GPS slant-path water vapor observations using 3D-VAR with anisotropic recursive filters. Mon. Weather Rev. 135: 15061521.
  • Lorenc A. 1992. Iterative analysis using covariance functions and filters. Q. J. R. Meteorol. Soc. 118: 569591.
  • Massart S, Cariolle D, Peuch V-H. 2005a.. Vers une meilleure représentation de la distribution et de la variabilité de l'ozone atmosphérique par l'assimilation des données satellitaires. C. R. Geosci. 337: 13051310.
  • Massart S, Manzoni H, Cariolle D, Peuch V-H, Piacentini A. 2005b.. ‘Validation of a 3D-Fgat assimilation of MIPAS ozone profiles in a global chemistry and transport model’. In Proceedings of the Fourth WMO Symposium on Assimilation of Observations in Meteorology and Oceanography, Prague, Czech Republic, April 2005.
  • Massart S, Piacentini A, Cariolle D, El Amraoui L, Semane N. 2007. Assessment of the quality of the ozone measurements from the Odin/SMR instrument using data assimilation. Canad. J. Phys. 85: 12091223.
  • Pannekoucke O, Berre L, Desroziers G. 2007. Filtering properties of wavelets for local background-error correlations. Q. J. R. Meteorol. Soc. 133: 363379.
  • Pannekoucke O, Berre L, Desroziers G. 2008. Background-error correlation length-scale estimates and their sampling statistics. Q. J. R. Meteorol. Soc. 134: 497508.
  • Pradier S, Attié JL, Chong M, Escobar J, Peuch V-H, Lamarque JF, Khattatov B, Edwards D. 2006. Evaluation of 2001 springtime CO transport over West Africa using MOPITT CO measurements assimilated in a global chemistry transport model. Tellus 58: 163176.
  • Purser RJ, Wu W-S, Parrish D, Roberts N. 2003a.. Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Weather Rev. 131: 15241535.
  • Purser RJ, Wu W-S, Parrish D, Roberts N. 2003b.. Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances. Mon. Weather Rev. 131: 15361548.
  • Purser RJ, de Pondeca M, Parrish D, Devenyi D. 2007. ‘Covariance modelling in a grid-point analysis’. Pp 1125 in Proceedings of workshop on flow-dependent aspects of data assimilation, 11–13 June 2007. ECMWF: Reading, UK.
  • Raspollini P, Belotti C, Burgess A, Carli B, Carlotti M, Ceccherini S, Dinelli BM, Dudhia A, Flaud J-M, Funke B, Höpfner M, López-Puertas M, Payne V, Piccolo C, Remedios JJ, Ridolfi M, Spang R. 2006. MIPAS level 2 operational analysis. Atmos. Chem. Phys. 6: 56055630.
  • Teyssèdre H, Michou M, Clark HL, Josse B, Karcher F, Olivié D, Peuch V-H, Saint-Martin D, Cariolle D, Attié J-L, Ricaud P, van der A RJ, Chéroux F. 2007. A new chemistry-climate tropospheric and stratospheric model MOCAGE-Climat: Evaluation of the present-day climatology and sensitivity to surface processes. Atmos. Chem. Phys. Discuss. 7: 1129511398.
  • Weaver A, Courtier P. 2001. Correlation modelling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc. 127: 18151846.
  • Weaver A, Ricci S. 2003. ‘Constructing a background-error correlation model using generalized diffusion operators’. Pp 327340 in Proceedings of seminar on recent developments in atmospheric and ocean data assimilation, 8–12 September 2003. ECMWF: Reading, UK.
  • Weber R, Talkner P. 1993. Some remarks on spatial correlation models. Mon. Weather Rev. 121: 26112617.