SEARCH

SEARCH BY CITATION

REFERENCES

  • Abbott MB, Bathhurst JC, Cunge JA, O'Connell PE, Rasmusen J. 1986. An introduction to the European hydrological system—Systeme Hydrological European, ‘SHE’. 1: History and philosophy of a physically based, distributed modelling system. J. Hydrol. 85: 4559.
  • Abbott MB, Bathhurst JC, Cunge JA, O'Connell PE, Rasmusen J. 1986. An introduction to the European hydrological system—Systeme Hydrological European, ‘SHE’. 2: Structure of a physically based, distributed modelling system. J. Hydrol. 85: 6177.
  • Anagnostou EN. 2004. A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol. Appl. 11: 291300.
  • Begueria S, Vicente-Serrano SM. 2006. Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. J. Appl. Meteorol. 45: 108124.
  • Bellon A, Lee GW, Zawadzki I. 2005. Error statistics of VPR corrections in stratiform precipitation. J. Appl. Meteorol. 44: 9981015.
  • Bennett LJ, Browning KA, Blyth AM, Parker DJ, Clarke PA. 2006. A review of the initiation of precipitation convection in the United Kingdom. Q. J. R. Meteorol. Soc. 132: 10011020.
  • Berenguer M, Corral C, Sanchez-Diezma R, Sempere-Torres D. 2005. Hydrological validation of a radar-based nowcasting technique. J. Hydrometeorol. 6: 532549.
  • Beven KJ. 1977. Hillslope hydrographs by the finite element method. Earth Surface Processes 2: 1328.
  • Beven KJ. 1986. Runoff production and flood frequency in catchments of order n: An alternative approach. pp. 107731 In Scale problems in hydrology. VKGupta IRodriguez-Iturbe, EFWood (eds). Reidel: Dordrecht, the Netherlands.
  • Beven KJ. 1997. TOPMODEL: A critique. Hydrol. Processes 11: 10691086.
  • Beven KJ. 2001. Rainfall-runoff modeling: The primer. John Wiley and Sons Ltd.: Chichester, UK.
  • Beven KJ, Binley AM. 1992. The future of distributed models—model calibration and uncertainty prediction. Hydrol. Processes 6: 279298.
  • Beven KJ, Kirby MJ. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24: 4369.
  • Beven KJ, Warren R, Zaoui J. 1980. SHE: Towards a methodology for physically based distributed forecasting in hydrology. pp. 133137 in IAHS Publication No. 12. Available from the Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK.
  • Beven KJ, Calver A, Morris EM. 1987. The Institute of Hydrology distributed model. Technical Report 98. Centre for Ecology and Hydrology, Wallingford, UK.
  • Beven KJ, Lamb J, Quinn P, Romanowicz R, Frear J. 1995. TOPMODEL. In Computer models of watershed hydrology. VPSingh (ed.). Water Resource Publications: Highlands Ranah, Colorado, USA; pp. 627668.
  • Blazkova S, Beven KJ. 2004. Flood frequency estimation by continuous simulation of sub-catchment rainfalls and discharge with the aim of improving dam safety assessment in a large basin in the Czech Republic. J. Hydrol. 292: 153172.
  • Blazkova S, Beven KJ, Kulasova A. 2002. On constraining TOPMODEL hydrograph simulations using partial saturated area information. Hydrol. Processes 16: 441458.
  • Bowler NEH, Pierce CE, Seed A. 2004. Development of a precipitation nowcasting algorithm based upon optical flow techniques. J. Hydrol. 288: 7491.
  • Browning KA. 1978. Meteorological applications of radar. Rep. Prog. Phys. 41: 761806.
  • Buizza R, Miller M, Palmer TN. 1999. Stochastic representation of model uncertainty in the ECMWF Ensemble Prediction System. Q. J. R. Meteorol. Soc. 125: 28872908.
  • Buizza R, Houtekamer PL, Toth Z, Pellerin G, Wei MZ, Zhu YJ. 2005. A comparison of the ECMWF, Msc and NCEP global ensemble prediction systems. Mon. Weather Rev. 133: 10761097.
  • Burn DH, Boorman DB. 1993. Estimation of hydrological parameters at ungauged catchments. J. Hydrol. 143: 429454.
  • Burnash RJC, Ferral RL, McGuire RA. 1973. A generalized stream flow simulation system. In Concerned modelling for digital computers. Joint Federal–State River Forecast Center: Sacramento, California, USA.
  • Calver A, Wood WL. 1995. The Institute of Hydrology distributed models. In Computer models of watershed hydrology. VPSingh (ed.). Water Resource Publications: Highlands Ranah, Colorado, USA; pp. 595626.
  • Calver A, Crooks S, Jones D, Kay A, Kjelsen T, Reynard N. 2005. National river catchment flood frequency method using continuous simulation. Joint Defra/EA Flood and Coastal Erosion Risk Management R&D Programme, R&D Technical Report FD2106TR March. Department of the Environment, Food and Rural Affairs, London, UK.
  • Carpenter TM, Sperfslage JA, Georgalakos KP, Sweeney T, Freaf DL. 1999. National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. J. Hydrol. 224: 2144.
  • CEH. 1999. Flood estimation handbook. (Five volumes.) Public Institute of Hydrology. Centre for Ecology and Hydrology: Wallingford, UK.
  • Cheng A, Xu K-M. 2006. Simulation of shallow cumuli and their transition to deep convective clouds by cloud-resolving models with different third-order turbulence closure. Q. J. R. Meteorol. Soc. 132: 359382.
  • Cluckie ID. 1993. Hydrological forecasting: Real time. In Encyclopaedia of environmental systems. PCYoung (ed.). Pergamon Press: Oxford, UK; pp. 291298.
  • Cluckie ID, Ede PF, Owens MD, Bailey AC, Collier CG. 1987. Some hydrological aspects of weather radar research in the United Kingdom. Hydrol. Sci. J. 32: 329346.
  • Collier CG. 1977. Radar measurement of precipitation. pp. 202207 in Proceedings of the WMO technical conference on instrumental methods of observing, Hamburg, 27–30 July 1977. WMO Tech. Doc. No. 480. World Meteorological Organization, Geneva, Switzerland.
  • Collier CG. 1996. Applications of weather radar systems. In A guide to uses of radar data in meteorology and hydrology. Second Edition. Wiley-Praxis: Chichester, UK.
  • Collier CG. 2000. Precipitation estimation and forecasting. WMO Operational Hydrology Report No. 46. WMO-No. 887. World Meteorological Organization, Geneva, Switzerland.
  • Collier CG. 2002. Development in radar and remote-sensing methods for measuring and forecasting rainfall. Philos. Trans. R. Soc. London A360: 13451361.
  • Collier CG, Davies F. 2004. Observations of the development of the convective boundary layer using radar and Doppler lidar. pp. 139143 in Proceedings of the European Conference on Radar in Meteorology and Hydrology (ERAD) 6–10 September 2004. Visby, Gotland Sweden. Copernicus GmbH, Max-Planck Str., Katlenburg-Lindau, Germany.
  • Collier CG, Fox NI. 2003. Assessing the flooding susceptibility of river catchments to extreme rainfall in the United Kingdom. Int. J. River Basin Management. 1: 111.
  • Collier CG, Hardaker PJ. 1996. Estimating probable maximum precipitation using a storm model approach. J. Hydrol. 183: 277306.
  • Collier CG, Knowles JM. 1986. Accuracy of rainfall estimates by radar. III: Application for short-term flood forecasting. J. Hydrol. 83: 237249.
  • Collier CG, Krzysztofowicz R. (Eds.). 2000. Quantitative precipitation forecasting. Special Issue, J. Hydrol. 239.
  • Collier CG, Lilley RBE. 1994. Forecasting thunderstorm initiation in north-west Europe using thermodynamic indices, satellite and radar data. Meteorol. Appl. 1: 7584.
  • Cornford D. 2004. A Bayesian state space modelling approach to probability quantitative precipitation forecasting. J. Hydrol. 288: 92104.
  • Cox DR, Isham VS. 1988. A simple spatial–temporal model of rainfall. Proc. R. Soc. London A415: 317328.
  • Cox DR, Isham VS, Northrop PJ. 2002. Floods: Some probability and statistical approaches. Philos. Trans. R. Soc. London A360: 13891408.
  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CS, Raper SCB, Yap KS. 2001. Predictions of future climate change. In Climate change 2001: The scientific basis. Contributions of Working Group 1 to the 3rd. Assessment Report of the IPCC. HoughtonJT, DingY, GriggsDJ, NoguerM, van der LondonP, DaiX, MarshallK, JohnsonCI (eds). Cambridge University Press: New York, USA; pp. 525582.
  • Dale M, Dempsey P, Dent, J. 2004. Extreme rainfall event recognition phase 2 work package 5: Establishing a user requirement for a decision-support tool. Research and Development Technical Report FD2208 of Defra/Environment Agency Flood and Coastal Defence R&D Programme. Department of the Environment, Food and Rural Affairs, London, UK.
  • Davies F, Collier CG, Pearson GN, Bozier KE. 2004. Doppler lidar measurement of turbulent structure function over an urban area. J. Atmos. Ocean. Technol. 21: 753761.
  • De Roo APJ, Barrthholmes J, Bongioannini-Cerlini P, Todini E, Bates PD, Horrit M, Hunter N, Beven K, Pappenberger F, Heise E, Rivin G, Hils M, Hollingsworth A, Holst B, Kwadijk J, Reggiance P, VanDijk M, Sattler K, Sprokkereef E. 2003. Development of a European flood forecasting system. Int. J. River Basin Management 1: 4959.
  • Dimet FLe, Talagrand O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus 38A: 97110.
  • Du J, Mullen SL, Sanders F. 1997. Short-range ensemble forecasting of quantitative precipitation. Mon. Weather Rev. 125: 24272459.
  • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Atmos. 99: 1014310162.
  • Fabry F, Frush C, Zawadzki I, Kilambi A. 1997. On the extraction of near-surface index of refraction using radar phase measurement from ground targets. J. Atmos. Ocean. Technol. 14: 978987.
  • Franks SW, Gineste PH, Beven KJ, Merot P. 1998. On constraining the prediction of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process. Water Resour. Res. 34: 787797.
  • Freeze RA, Harlon RL. 1969. Blueprint for a physically based digitally simulated hydrologic response model. J. Hydrol. 9: 237258.
  • Fritsch M, Carbone RE. 2004. Improving quantitative precipitation forecasts in the warm season. Bull. Am. Meteorol. Soc. 85: 955965.
  • Georgakakos KP. 1986a.. On the design of national real-time warning systems with capability for site-specific flash flood forecasts. Bull. Am. Meteorol. Soc. 67: 12331239.
  • Georgakakos KP. 1986b.. A generalised stochastic hydrometeorological model for flood and flash flood forecasting. 1: Formulation. Water Resour. Res. 22: 20832095.
  • Georgakakos KP. 1987. Real-time flash flood prediction. J. Geophys. Res. 92: 96159629.
  • Georgakakos KP. 2000. Covariance propagation and updating in the context of real-time radar data assimilation by quantitative precipitation forecast models. J. Hydrol. 239: 115129.
  • Georgakakos KP. 2006. Analytical results for operational flash flood guidance. J. Hydrol. 317: 81103.
  • Georgakakos KP, Hudlow MD. 1984. Design of national real-time warning systems with capability for site-specific flash flood forecasts. Bull. Am. Meteorol. Soc. 67: 12331239.
  • Germann U, Zawadzki I. 2004. Scale-dependence of the predictability of precipitation from continental radar images. II: Probability forecasts. J. Appl. Meteorol. 43: 7489.
  • Golding BW. 1998. Nimrod: A system generating automatic very-short-range forecasts. Meteorol. Apps. 5: 116.
  • Golding BW. 2000. Quantitative precipitation forecasting in the UK. J. Hydrol. 239: 286305.
  • Golding B, Clarke P, May B. 2005. The Boscastle flood: Meteorological analysis of the conditions leading to flooding on 16 August 2004. Weather 60: 230235.
  • Grecu M, Krajewski WF. 2000. A large-sample investigation of statistical procedures for radar-based short-term quantitative precipitation forecasting. J. Hydrol. 239: 6984.
  • Gregory JM, Mitchell JFB. 1995. Simulation of daily variability of surface temperature and precipitation over Europe in the current and 2 × CO2 climates using the UKMO high-resolution Climates model. Q. J. R. Meteorol. Soc. 121: 14511476.
  • Grum M, Harremoes P, Linde JJ. 2002. Assimilating a multitude of rainfall and runoff data using a stochastic state space modelling approach. In Proceedings of the ninth International Conference on Urban Drainage, 8–11 September 2002, Portland, Oregon USA. American Society of Civil Engineers, Reston, Virginia, USA.
  • Gumbel EJ. 1958. Statistic of extremes. Columbia Universal Press: New York, USA.
  • Hand WH. 2002. The Met Office convection diagnosis scheme. Meteorol. Appl. 9: 6983.
  • Hand WH. 1996. A technique for nowcasting heavy showers and thunderstorms. Meteorol. Appl. 3: 3141.
  • Hand WH, Conway BJ. 1995. Nowcasting showers using an object oriented approach. Weather Forecasting 10: 327341.
  • Hand WH, Fox NI, Collier CG. 2004. A study of twentieth-century extreme rainfall events in the United Kingdom with implications for forecasting. Meteorol. Appl. 11: 1531.
  • Hosking JRM, Wallis JR. 1997. Regional frequency analysis: An approach based on L-moments. Cambridge University Press: New York, USA.
  • Houser PR, Shuttleworth WJ, Famiglietti JS, Gupta HV, Syed KH, Goodrich DC. 1998. Integration of soil moisture remote sensing and hydrologic modelling using data assimilation. Water Resour. Res. 34: 34053420.
  • Hunt JCR, Burgers JM. 2002. Floods in a changing climate: A review. Philos. Trans. R. Soc. London A360: 15311543.
  • Hurrell JW. 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269: 676679.
  • Illingworth A. 2003. Improved precipitation rates and data quality by using polametric measurements. pp. 130166 In Weather radar principles and advanced applications. P.Meischmer (ed.). Springer-Verlag: Berlin, Germany.
  • Jenkinson AF. 1955. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Q. J. R. Meteorol. Soc. 81: 158171.
  • Jones CD, Macpherson B. 1997. A latent-heat nudging scheme for assimilation of precipitation data into an operational mesoscale model. Meteorol. Appl. 4: 269277.
  • Kim CP, Salvucci GD, Entekhabi D. 1999. Ground water–surface water interaction and the climate spatial patterns of hillslope hydrological response. Hydrol. Earth. Syst. Sci. 3: 375384.
  • Krzysztofowicz R. 1999. Bayesian theory of probability forecasting via a deterministic hydrologic model. Water Resour. Res. 35: 27392750.
  • Lambert AO. 1969. A comprehensive rainfall/runoff model for an upland catchment area. J. Inst. Water Engineers 23: 231238.
  • Lambert AO. 1972. Catchment models based on ISO functions. J. Inst. Water Engineers 26: 413422.
  • Lean HW, Clarke PA. 2003. The effects of changing resolution on mesoscale modelling of line convection and slantwise circulation in FASTEX I0P16. Q. J. R. Meteorol. Soc. 129: 22552278.
  • Li PW, Lai EST. 2004. Short-range quantitative precipitation forecasting in Hong Kong. J. Hydrol. 288: 189209.
  • Li RM, Simons DB, Stevens MA. 1975. Nonlinear kinetic wave approximation for water routing. Water Resour. Res. 11: 245252.
  • Lin Y, Ray PS, Johnson KW. 1993. Initialization of a modelled convective storm using Doppler radar-derived fields. Mon. Weather Rev. 121: 27572775.
  • Lorenz EN. 1963. The predictability of a flow which possesses many scales of motion. Tellus 21: 289307.
  • McEnery J, Ingram J, Duam Q, Adams T, Anderson L. 2005. NOAA's Advanced hydrologic prediction service. Bull. Am. Meteorol. Soc. 86: 375385.
  • Macpherson B, Lindskog M, Ducrocq V, Nuet M, Gregonic G, Rossa A, Haase G, Holleman I, Alberoni PP. 2004. Assimilation of radar data in numerical weather prediction (NWP) models. In Weather radar principles and advanced applications. P.Meiser (eds). Springer: Berlin, Germany; pp. 255279.
  • Mason PJ, Thomson DJ. 1992. Stochastic backscatter in large-eddy simulations of boundary layers. J. Fluid. Mech. 242: 5178.
  • Mecklenburg S, Joss J, Schmid W. 2000. Improving the nowcasting of precipitation in an Alpine region with an enhanced radar echo tracking algorithm. J. Hydrol. 239: 4668.
  • Met Office. 2002. Climate change scenarios for the United Kingdom. The UKCIP02 Scientific Report April 2002. Defra, Tyndall Centre, Met Office, Exeter, UK.
  • Michelson DB, Jones CG, Lanelius T, Collier CG, Haase G, Heen M. 2003. Down-to-earth modelling of equivalent surface precipitation using multisource data and radar. Q. J. R. Meteorol. Soc. 129: 119.
  • Miller RG. 1964. A trustworthy jackknife. Ann. Math. Stat. 35: 15841605.
  • Mittermaier P, Illingworth AJ. 2003. Comparison of model-derived and radar-observed freezing-level heights: Implications for vertical reflectivity profile-correction schemes. Q. J. R. Meteorol. Soc. 129: 8995.
  • Mogil HM, Monro JC, Groper HS. 1978. NWS's flash flood warning and disaster preparedness programs. Bull. Am. Meteorol. Soc. 59: 690699.
  • Molteni F, Buizza R, Marsigli C, Montani A, Nerozzi F, Paccagnella T. 2001. Strategy for high-resolution ensemble prediction. I: Definition of representative members and global-model experiments. Q. J. R. Meteorol. Soc. 127: 20672094.
  • Moncrieff MW, Miller MJ. 1976. The dynamics and simulation of tropical cumulonimbus and squall lines. Q. J. R. Meteorol. Soc. 102: 373384.
  • Moore RJ. 1985. The probability-distributed principle and runoff production at point and basin scales. Hydrol. Sci. J. 30: 273297.
  • Moore RJ, Clarke RT. 1981. A distribution function approach to rainfall-runoff modelling. Water Resour. Res. 17: 13671382.
  • Moore R, Coles S. 2006. Work package 4 report. In The final report of the Extreme Event Recognition II Project. Ed. B. J. Golding. Defra/EA FD2208. Department of the Environment, Food and Rural Affairs, London, UK.
  • Moore RJ, Cole SJ, Bell VA, Jones DA. 2006. Issues in flood forecasting: Ungauged basins, extreme floods and uncertainty. pp. 103122 In Frontiers in flood research. (Le point de la recherché sur les crues). IAHS Publication No. 305. International Association of Hydrological Sciences Press, Centre for Ecology and Hydrology: Wallingford, UK.
  • Morcrette CJ, Browning KA, Blyth AM, Bozier KE, Clarke PA, Ladd D, Norton EG, Pavelin E. 2006. Secondary initiation of multiple bands of cumulonimbus over southern Britain I: An observational case-study. Q. J. R. Meteorol. Soc. 132: 10211051.
  • Mylne K. 2002. Decision-making from probability forecasts based on forecast value. Meteorol. Appl. 9: 307315.
  • NERC. 1975. Flood studies report. (Five volumes.) Natural Environment Research Council: London, UK.
  • Ntelekos AA, Krajewski WF, Georgakakos KP. 2006. On the uncertainties of flash flood guidance towards probabilistic forecasting of flash floods. Adv. Water Res. 63:in press.
  • O'Loughlin EM. 1981. Saturated regions in catchments and their relation to soil and topographic properties. J. Hydrol. 53: 229246.
  • O'Loughlin EM. 1986. Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour. Res. 22: 794804.
  • Orlandi A, Ortolni A, Meneguzzo F, Levizzani V, Torricella F, Turk FJ. 2004. Rainfall assimilation in RAMS by means of the Kuo parameterisation inversion: Method and preliminary results. J. Hydrol. 288: 2035.
  • Osborn TJ, Hulme M. 2002. Evidence for trends in heavy rainfall events over the UK. Philos. Trans. R. Soc. London A360: 13131325.
  • Palmer TN. 2001. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Q. J. R. Meteorol. Soc. 127: 279304.
  • Palmer TN, Raisanen J. 2002. Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415: 512514.
  • Palmer T, Buizza R, Hagedorn R, Lawrence A, Leutbecher M, Smith L. 2006. Ensemble prediction: A pedagogical perspective. pp. 1017 in ECMWF Newsletter No. 106. Available from ECMWF, Shinfield, Reading, UK.
  • Pierce CE, Hardaker PJ, Collier CG, Haggett CM. 2000. GANDOLF: A system for generating automated nowcasts of convective precipitation. Meteorol. Appl. 1: 341360.
  • Pierce C, Bowler M, Seed A, Jones D, Moore R. 2004. Towards stochastic fluvial flood forecasting: Quantitative uncertainty in very short range QPFs and its propagation through hydrological and decision making models. In EU ACTIF Project 2nd workshop on Quantitative, reduction and dissemination of uncertainty in flood forecasting, 22–23 November 2004, Delft, the Netherlands. European Union, Brussels, Belgium.
  • Quinn PF, Beven KJ, Lamb J. 1995. The ln(a/tanβ) index: How to calculate it and how to use it in the TOPMODEL framework. Hydrol. Processes 9: 161182.
  • Rajagopalan B, Lall U, Zebiak SE. 2002. Categorical climate forecast trough regularization and optimal combination of multiple GCM ensembles. Mon. Weather Rev. 130: 17921811.
  • Refsguard J.-C, Storm B, Abbott MB. 1996. Comment on 'A discussion of distributed hydrological modelling. In Distributed hydrological modelling. KBeven, MBAbbott, JCRefsguard (eds). Kluwer Academic: Dordrecht, the Netherlands.
  • Rihan FA, Collier CG, Roulstone, I. 2005. Four-dimensional variational data assimilation for Doppler radar wind data. J. Comput. Appl. Math. 176: 1534.
  • Robbins GL, Collier CG. 2005. Assessing error in hydrological and hydraulic model output flows. Atmos. Sci. Lett. 6: 4753.
  • Roberts N. 2005. Final report from the storm scale Modelling Project Joint Defra/EA Flood and Coastal Erosion Risk Management Research and Development Programme. R&D Technical Report FD 2207/TR. Department of the Environment, Food and Rural Affairs, London, UK.
  • Robson AJ. 2002. Evidence for trends in UK flooding. Philos. Trans. R. Soc. London A360: 13271343.
  • Rogers RF, Fritsch JM, Lambert WC. 2000. A simple technique for using radar data in the dynamic initialization of a mesoscale model. Mon. Weather Rev. 128: 25602574.
  • Rosenfield D, Collier CG. 1998. Estimating surface precipitation. In Global energy and water cycles. KABrowning, RGurney (eds). Cambridge University Press Cambridge UK; pp. 124133.
  • Ryzhkov AV, Schuur TJ, Burgess DW, Heinselman PL, Giangrande SE, Zrnic DS. 2005. The joint polarization experiment polarimetric rainfall measurement and hydrometeor classification. Bull. Am. Meteorol. Soc. 86: 809824.
  • Seed A. 2003. A dynamic and spatial scaling approach to advection forecasting. J. Appl. Meteorol. 42: 381388.
  • Sempere Torres D, Rodriguez J-Y, Obled C. 1992. Using the DPFT approach to improve flash flood forecasting models. Natural Hazards 5: 1741.
  • Sene K, Tilford K. 2004. Review of transfer function modelling for fluvial flood forecasting. R&D Technical Report W5C-013/6/TR Defra/Environment Agency Flood & Coastal Defence R&D Programme. Department of the Environment, Food and Rural Affairs, London, UK.
  • Senior CA, Jones RG, Lowe JA, Durman CF, Hudson D. 2002. Predictions of extreme precipitation and sea-level rise under climate change. Philos. Trans. R. Soc. London A360: 13011311.
  • Shutts G. 2005. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131: 30793102.
  • Sivapalan M, Wood EF, Beven KJ. 1990. On hydrological similarity. 3: A dimensionless flood frequency distribution. Water Resour. Res. 26: 4358.
  • Sleigh MW, Collier CG. 2004. An investigation of the tipping term as a prognostic tool in short-range thunderstorm forecasting. Atmos. Res. 69: 185198.
  • Smith KT, Austin GL. 2000. Nowcasting precipitation—A proposal for a way forward. J. Hydrol. 239: 3445.
  • Smith RNB, Blyth EM, Finch JW, Goodchilds S, Hall RL, Madry S. 2006. Soil state and surface hydrology diagnosis based on MOSES in the Met Office Nimrod nowcasting system. Meteorol. Appl. 13: 89109.
  • Stephenson DB, Coelho CAS, Balmaseda M, Doblas-Reyes FJ. 2005. Forecast assimilation: A unified framework for the combination of multi-model weather and climate predictions. Tellus 57A: 253264.
  • Strensrud DJ, Fritsch JM. 1994. Mesoscale convective systems in weakly forced large-scale environments. III: Numerical simulations and inspection for operational forecasting. Mon. Weather Rev. 122: 20842404.
  • Strensrud DJ, Bao JW, Warner TT. 2000. Using initial conditions and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Weather Rev. 128: 20772107.
  • Sun J, Crook NA. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a Cloud model and its adjoint. I: Model development and simulated data experiments. J. Atmos. Sci. 54: 16421661.
  • Sweeney TL. 1992. Modernized areal flash flood guidance. NOAA Technical Report NWSHYDRO 44. Hydrology Laboratory, National Weather Service, NOAA, Silver Spring MD, USA.
  • Tabony RC. 1983. Extreme value analysis in meteorology. Meteorol. Mag. 122: 7798.
  • Thielen J, Boundevillain B, Andrieu H. 2000. A radar data based short-term rainfall prediction model for urban areas—A simulation using meso-scale meteorological modelling. J. Hydrol. 239: 97114.
  • Thompson PD. 1957. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus 4: 275295.
  • Todini E. 1995. New trends in modelling soil processes from hillslope to GCM scales. In The role of water and the hydrological cycle in global change. HROliver, SAOliver (eds). NATO ASI Series Vol. 131. NATO: Brussels, Belgium; pp. 317347.
  • Tokar AS, Johnson PA. 1999. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 4: 232239.
  • Tracton MS, Kalnay E. 1993. Operational ensemble prediction at the National Meteorological Center: Practical aspects. Weather and Forecasting 8: 378398.
  • Van Horne MP, Vivoni ER, Entekhabi D, Hoffman RN, Grassotti C. 2006. Evaluating the effects of image filtering in short-term radar rainfall forecasting for hydrological applications. Meteorol. Appl. 13: 289303.
  • Vignal B, Galli G, Joss J, Germann U. 2000. Three methods to determine profiles of reflectivity from volumetric radar data to correct precipitation estimates. J. Appl. Meteorol. 39: 17151726.
  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S. 2003. A shuffled complex evolution Metropolis algorithm for optimi-zation and uncertainty assessment of hydrological model parameters. Water Resour. Res. 39:doi: 10.1029/2002WR001642.
  • Wang W, Warner TT. 1988. Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a mesoscale-model precipitation forecast: A case study. Mon. Weather Rev. 116: 25932613.
  • Weckwerth TM, Pellet CR, Fabry F, Park S, LeMore MA, Wilson JW. 2005. Radar refractivity retrieval: Validation and application to short-term forecasting. J. Appl. Meteorol. 44: 285300.
  • Wheater HS. 2002. Progress in and prospects for fluvial flood modelling. Philos. Trans. R. Soc. London A360: 14091431.
  • Wilson JW, Megenhardt DL. 1997. Thunderstorm initiation, organisation and lifetime associated with Florida boundary layer convergence lines. Mon. Weather Rev. 125: 15071525.
  • WMO. 1986. Manual for estimation of probable maximum precipitation. Operational Hydrology Report 1. World Meteorological Organization: Geneva, Switzerland.
  • Wu B, Verlinde J, Sun JZ. 2000. Dynamical and microphysical retrievals from Doppler radar observations of a deep convective cloud. J. Atmos. Sci. 57: 262283.
  • Young PC. 1984. Recursive estimation and time series analysis. Springer-Verlag: Berlin, Germany.
  • Young PC. 2002. Advances in real-time flood forecasting. Philos. Trans. R. Soc. London A360: 14331450.
  • Young PC, Beven KJ. 1994. Data-based mechanistic modelling and the rainfall-flow nonlinearity. Envirometrics 5: 335363.
  • Zangl G. 2004. Numerical simulations of the 12–13 August 2002 flooding events in eastern Germany. Q. J. R. Meteorol. Soc. 130: 19211940.
  • Zawadzki II, Morneau J, Laprice R. 1994. Prediction of precipitation patterns: An operational approach. J. Appl. Meteorol. 3: 15621571.