SEARCH

SEARCH BY CITATION

References

  • Alberoni PP, Ducrocq V, Gregorič G, Haase G, Holleman I, Lindskog M, Macpherson B, Nuret M, Rossa A. 2003. ‘Quality and assimilation of radar data for NWP—a review.’ COST-717 Action, 38 pp.
  • Benjamin SG, Dévényi D, Weygandt SS, Brundage KJ, Brown JM, Grell GA, Kim D, Schwartz BE, Smirnova TG, Smith TL, Manikin GS. 2004. An hourly assimilation–forecast cycle: The RUC. Mon. Weather Rev. 132: 495518.
  • Bringi VN, Chandrasekar V. 2001. Polarimetric Doppler weather radar: Principles and applications. Cambridge University Press.
  • Collier CG. 1996. Applications of weather radar systems. A guide to uses of radar data in meteorology and hydrology. 2nd edition. Wiley-Praxis: Chichester. 390 pp.
  • CollierCG (editor). 2001. COST-75 Project, Advanced Weather Radar Systems 1993–97. European Commission EUR 19546: Brussels.
  • Crook NA, Sun J. 2004. Analysis and forecasting of the low-level wind during the Sydney 2000 Forecast Demonstration Project. Weather and Forecasting 19: 151167.
  • Doviak RJ, Zrnic DS. 1993. Doppler radar and weather observations. 2nd edition. Academic Press: London, San Diego.
  • Gao J, Xue M, Shapiro A, Droegemeier KK. 1999. A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Weather Rev. 127: 21282142.
  • Gao J, Xue M, Lee S-Y, Shapiro A, Xu Q, Droegemeier KK. 2006. A three-dimensional variational single-Doppler velocity retrieval method with simple conservation equation constraint. Meteorol. Atmos. Phys. 94: 1126.
  • Golding BW. 2000. Quantitative precipitation forecasting in the UK. J. Hydrol. 239: 286305.
  • Gong J, Wang L, Xu Q. 2003. A three-step dealiasing method for Doppler velocity data quality control. J. Atmos. Oceanic Technol. 20: 17381748.
  • Henja A, Michelson DB. 1999. ‘Improved polar to Cartesian radar data transformation.’ Pp. 252255 in Preprints, 29th Conference on Radar Meteorology. Amer. Meteorol. Soc.
  • Krzysztofowicz R, Collier CG (editors). 2004. Quantitative precipitation forecasting II. Special issues (1–2) of J. Hydrol. 288: 236 pp.
  • Lin Y, Ray PS, Johnson KW. 1993. Initialization for a modeled convective storm using Doppler radar-derived fields. Mon. Weather Rev. 121: 27572775.
  • Lindskog M, Salonen K, Järvinen H, Michelson DB. 2004. Doppler radar wind data assimilation with HIRLAM 3DVAR. Mon. Weather Rev. 132: 10811092.
  • Lorenc AC. 1997. Development of an operational variational assimilation scheme. J. Meteorol. Soc. Jpn 75: 339346.
  • Lorenc AC, Ballard SP, Bell RS, Ingleby NB, Andrews PLF, Barker DM, Bray JR, Clayton AM, Dalby T, Li D, Payne TJ, Saunders FW. 2000. The Met. Office Global three-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc. 126: 29913012.
  • Macpherson B, Wright BJ, Hand WH, Maycock AJ. 1996. The impact of MOPS moisture data in the UK Meteorological Office mesoscale data assimilation scheme. Mon. Weather Rev. 124: 17461766.
  • Macpherson B, Andrews P, Harcourt S, Ingleby B, Chalcraft B, Maycock A, Renshaw R, Parrett C, Anderson S, Sharpe M, Harrison D, Gibson M. 2002. ‘The operational mesoscale data assimilation system 1999–2001: Implementation of 3DVar and later updates.’ Forecasting Research Technical Report No. 374. Available from Met Office, Exeter.
  • May PT, Sato T, Yamamoto M, Kato S, Tsuda T, Fukao S. 1989. Errors in the determination of wind speed by Doppler radar. J. Atmos. Oceanic Technol. 6: 235242.
  • Miller LJ, Sun J. 2003. ‘Initialization and forecasting of thunderstorms: Specification of radar measurement errors.’ Pp. 146149 in Preprints, 31st Conf. on Radar Meteorology, Seattle, USA. Amer. Meteorol. Soc.
  • Morcrette CJ, Browning KA, Blyth AM, Bozier KE, Clark PA, Ladd D, Norton EG, Pavelin E. 2006. Secondary initiation of multiple bands of cumulonimbus over southern Britain. I: An observational case-study. Q. J. R. Meteorol. Soc. 132: 10211051.
  • Nastrom GD. 1997. Doppler radar spectral width broadening due to beamwidth and wind shear. Ann. Geophys. 15: 786796.
  • Qiu C-J, Shao A-M, Liu S, Xu Q. 2006. A two-step variational method for three-dimensional wind retrieval from single Doppler radar. Meteorol. Atmos. Phys. 91: 18.
  • Rihan FA, Collier CG, Roulstone I. 2005. Four-dimensional variational data assimilation for Doppler radar wind data. J. Comput. Appl. Math. 176: 1534.
  • Rogers RR, Tripp BR. 1964. Some radar measurements of turbulence in snow. J. Appl. Meteorol. 3: 603610.
  • Sun J, Crook NA. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci. 54: 16421661.
  • Sun J, Crook NA. 1998. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci. 55: 835852.
  • Sun J, Crook NA. 2001. Real-time low-level wind and temperature analysis using single WSR-88D data. Weather and Forecasting 16: 117132.
  • Xu Q, Gong J. 2003. Background error covariance functions for Doppler radial-wind analysis. Q. J. R. Meteorol. Soc. 129: 17031720.
  • Xu Q, Liu S, Xue M. 2006. Background error covariance functions for vector wind analyses using Doppler-radar radial-velocity observations. Q. J. R. Meteorol. Soc. 132: 28872904.