• Anderson JL. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev. 129: 28842903.
  • Anderson JL, Anderson SL. 1999. A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127: 27412758.
  • Bishop CH, Etherton BJ, Majumdar SJ. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 129: 420436.
  • Cardinali C. 2009. Monitoring the observation impact on the short-range forecast. Q. J. R. Meteorol. Soc. 135: 239250.
  • Cardinali C, Pezzulli S, Andersson E. 2004. Influence-matrix diagnostic of a data assimilation system. Q. J. R. Meteorol. Soc. 130: 27672786.
  • Dee DP, da Silva AM. 2003. The choice of variable for atmospheric moisture analysis. Mon. Weather Rev. 131: 155171.
  • Dee DP, Rukhovets L, Todling R, da Silva AM, Larson JW. 2001. An adaptive buddy check for observational quality control. Q. J. R. Meteorol. Soc. 127: 24512471.
  • Desroziers G, Berre L, Chapnik B, Poli P. 2005. Diagnosis of observation, background and analysis-error statistics in observation space. Q. J. R. Meteorol. Soc. 131: 33853396.
  • Evensen G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5): 1014310162.
  • Houtekamer PL, Mitchell HL. 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129: 123137.
  • Hunt BR, Kostelich EJ, Szunyogh I. 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D 230: 112126.
  • Kelly G, Thépaut J-N, Buizza R, Cardinali C. 2007. The value of targeted observations. Part I: Data denial experiments for the Atlantic and the Pacific.’ ECMWF Tech. Memo. 511, 27 pp.
  • Langland RH, Baker NL. 2004. Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus 56A: 189201.
  • Liu J. 2007. Applications of the LETKF to adaptive observations, analysis sensitivity, observation impact, and assimilation of moisture.’ PhD thesis, University of Maryland.
  • Liu J, Kalnay E. 2008. Estimating observation impact without adjoint model in an ensemble Kalman filter. Q. J. R. Meteorol. Soc. 134: 13271335.
  • Liu J, Li H, Kalnay E, Kostelich EJ, Szunyogh I. 2009. Univariate and multivariate assimilation of AIRS humidity retrievals with the local ensemble transform Kalman filter. Mon. Weather Rev., in press.
  • Lord SJ, Kalnay E, Daley R, Emmit GD, Atlas R. 1997. ‘Using OSSEs in the design of the future generation of integrated observing systems.’ 1st Symposium on Integrated Observation Systems, American Meteorological Society.
  • Lorenz EN, Emanuel KA. 1998. Optimal sites for supplementary observations: Simulation with a small model. J. Atmos. Sci. 55: 399414.
  • Molteni F. 2003. Atmospheric simulations using a GCM with simplified physical parametrizations. I: Model climatology and variability in multi-decadal experiments. Clim. Dyn. 20: 175191.
  • Ott E, Hunt BR, Szunyogh I, Zimin AV, Kostelich EJ, Corazza M, Kalnay E, Patil DJ, Yorke JA. 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A: 415428.
  • Rabier F, Fourrié N, Chafäi D, Prunet P. 2002. Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances. Q. J. R. Meteorol. Soc. 128: 10111027.
  • Wahba G. 1990. Spline models for observational data. CBMS-NSF, Regional Conference Series in Applied Mathematics 59. Society for Industrial and Applied Mathematics.
  • Whitaker JS, Hamill TM. 2002. Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130: 19131924.