SEARCH

SEARCH BY CITATION

References

  • Buikov MV. 1961. Kinetics of distillation in a polydisperse fog. Izv. Acad. Sci. USSR, Ser. Geophys., 7: 10581065.
  • Buikov MV. 1963. A method of the kinetic equations in the theory of clouds. Proc. All-Union Meteorol. Conf., Leningrad, USSR, Vol. 5, 122128.
  • Clark TL. 1976. Use of log-normal distributions for numerical calculations of condensation and collection. J. Atmos. Sci. 33: 810821.
  • Cooper WA. 1989. Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci. 46: 13011311.
  • Corrsin S. 1974. Limitations of gradient transport models in random walks and in turbulence. Pp 2560 in Turbulent diffusion in environmental pollution: Proceedings of a Symposium held at Charlottesville, Virginia, 8–14 April 1973, FrenkielFN, MunnRE (eds). Adv. Geophys. 18A. Academic Press.
  • Erlick C, Khain A, Pinsky M, Segal Y. 2005. The effect of wind velocity fluctuations on drop spectrum broadening in stratocumulus clouds. Atmos. Res. 75: 1545.
  • Feingold G, Stevens B, Cotton WR, Walko RL. 1994. An explicit cloud microphysics/LES model designed to simulate the Twomey effect. Atmos. Res. 33: 207233.
  • Feingold G, Cotton WR, Stevens B, Frisch AS. 1996. The relationship between drop in-cloud residence time and drizzle production in numerically simulated stratocumulus clouds. J. Atmos. Sci. 53: 11081122.
  • Feingold G, Kreidenweis SM, Zhang Y. 1998. Stratocumulus processing of gases and cloud condensation nuclei. 1: Trajectory ensemble model. J. Geophys. Res. 103: 1952719542.
  • Garratt JR. 1992. The atmospheric boundary layer. Cambridge University Press.
  • Gerber H. 1991. Supersaturation and droplet spectral evolution in fog. J. Atmos. Sci. 48: 25692588.
  • Hall WD. 1980. A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci. 37: 24862507.
  • Harrington JY, Feingold G, Cotton WR. 2000. Radiative impacts on the growth of a population of drops within simulated summertime Arctic stratus. J. Atmos. Sci. 57: 766785.
  • Khain AP, Ovtchinnikov M, Pinsky M, Pokrovsky A, Krugliak H. 2000. Notes on the state-of-the-art numerical modelling of cloud microphysics. Atmos. Res. 55: 159224.
  • Khain AP, Pokrovsky A, Pinsky M, Seifert A, Phillips V. 2004. Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci. 61: 29632982.
  • Khain AP, BenMoshe N, Pokrovsky A. 2008. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification. J. Atmos. Sci. 65: 17211748.
  • Khairoutdinov MF, Kogan YL. 1999. A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci. 56: 21152131.
  • Khvorostyanov VI, Curry JA. 1999a. Toward the theory of stochastic condensation in clouds. Part I: A general kinetic equation. J. Atmos. Sci. 56: 39853996.
  • Khvorostyanov VI, Curry JA. 1999b. Toward the theory of stochastic condensation in clouds. Part II: Analytical solutions of the gamma-distribution type. J. Atmos. Sci. 56: 39974013.
  • Khvorostyanov VI, Khain AP, Kogteva EL. 1989. A two-dimensional non-stationary microphysical model of a three-phase convective cloud and evaluation of the effects of seeding by a crystallizing agent. Sov. Meteorol. Hydrol. 5: 3345.
  • Kogan YL. 1991. The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci. 48: 11601189.
  • Kogan YL, Mazin IP. 1981. Role of turbulent mixing of cloud droplets in cloud microstructure and rain formation. Izvestia, Atmos. Oceanic Phys. 17: 702707.
  • Kogan YL, Khairoutdinov MP, Lilly DK, Kogan ZN, Liu Q. 1995. Modeling of stratocumulus cloud layers in a large eddy simulation model with explicit microphysics. J. Atmos. Sci. 52: 29232940.
  • Korolev AV. 1995. The influence of supersaturation fluctuations on droplet size spectra formation. J. Atmos. Sci. 52: 36203634.
  • Korolev AV, Isaac GA. 2000. Drop growth due to high supersaturation caused by isobaric mixing. J. Atmos. Sci. 57: 16751685.
  • Korolev AV, Mazin IP. 2003. Supersaturation of water vapor in clouds. J. Atmos. Sci. 60: 29572974.
  • Kovetz A, Olund B. 1969. The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci. 26: 10601065.
  • LaikhtmanDL (ed). 1976. Dynamic meteorology. Gidrometeoizdat: Leningrad.
  • Levin LM, Sedunov YS. 1966. Stochastic condensation of drops and kinetics of cloud spectrum formation. J. Rech. Atmos. 2: 425432.
  • Magaritz L, Pinsky M, Krasnov O, Khain A. 2009. Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels. J. Atmos. Sci. 66: 781805.
  • Manton MJ. 1979. On the broadening of a droplet distribution by turbulence near cloud base. Q. J. R. Meteorol. Soc. 105: 899914.
  • Matveev LT. 1984. A course of general meteorology (physics of the atmosphere), 2nd edition. Gidrometeoizdat: Leningrad (Sant Petersburg).
  • Mazin IP, Merkulovich VM. 2008. Stochastic condensation and its possible role in liquid cloud microstructure formation (Review). Pp 263295 in Some problems of cloud physics (collected papers). Memorial Issue dedicated to Prof. S.M. Shmeter, Moscow, National Geophysical Committee, Russian Academy of Science.
  • Merkulovich VM, Stepanov AS. 1977. Hygroscopicity effects and surface tension forces during condensational growth of cloud droplet in the presence of turbulence. Izv. Akad. Sci. USSR, Atmos. Oceanic Phys. 13: 163171.
  • Monin AS, Yaglom AM. 1975. Statistical fluid mechanics: Mechanics of turbulence, Vol. 2. MIT Press: Cambridge, Massachusetts.
  • Pinsky M, Magaritz L, Khain A, Krasnov O, Sterkin A. 2008. Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part I: Model description and first results in a nonmixing limit. J. Atmos. Sci. 65: 20642086.
  • Prandtl L. 1925. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 5: 136139.
  • Pruppacher HR, Klett JD. 1997. Microphysics of clouds and precipitation, 2nd edition. Kluwer.
  • Sedunov YS. 1974. Physics of drop formation in the atmosphere. John Wiley: New York.
  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG. 2005. A description of the Advanced WRF Version 2. NCAR Tech. Note 468 + STR.
  • Srivastava RC. 1989. Growth of cloud drops by condensation: A criticism of currently accepted theory and a new approach. J. Atmos. Sci. 46: 869887.
  • Stepanov AS. 1975. Condensational growth of cloud drops in a turbulized atmosphere. Izv. Akad. Sci. USSR, Atmos. Oceanic Phys. 11: 2742.
  • Stevens B, Feingold G, Cotton WR, Walko RL. 1996. Elements of the microphysical structure of numerically simulated nonprecipitating stratocumulus. J. Atmos. Sci. 53: 9801006.
  • Stevens B, Moeng C-H, Ackerman AS, Bretherton CS, Chlond A, de Roode S, Edwards J, Golaz J-C, Jiang H, Khairoutdinov M, Kirkpatrick MP, Lewellen DC, Lock A, Müller F, Stevens DE, Whelan E, Xhu P. 2005. Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Weather Rev. 133: 14431462.
  • Stull RB. 1988. An introduction to boundary layer meteorology. Kluwer.
  • Takahashi T. 1974. Numerical simulation of tropical showers. J. Atmos. Sci. 31: 219232.
  • Voloshchuk VM, Sedunov YS. 1977. A kinetic equation for the evolution of the droplet spectrum in a turbulent medium at the condensation stage of cloud development. Sov. Meteorol. Hydrol. 3: 314.
  • Yin Y, Levin Z, Reisin TG, Tzivion S. 2000. The effects of giant cloud condensational nuclei on the development of precipitation in convective clouds: A numerical study. Atmos. Res. 53: 91116.