SEARCH

SEARCH BY CITATION

References

  • Bannister RN, Katz D, Cullen MJP, Lawless AS, Nichols NK. 2008. Modelling of forecast errors in geophysical fluid flows. Int. J. Num. Meth. Fluids 56: 11471153.
  • Cardinali C, Pezzuli S, Andersson E. 2004. Influence-matrix diagnostic of a data assimilation system. Q. J. R. Meteorol. Soc. 130: 27672786.
  • Chambers JE, Quintana EV, Duncan MJ, Lissauer JJ. 2002. Symplectic integrator algorithms for modelling planetary accretion in binary star systems. Astron J. 123: 28842894.
  • Cullen MJP. 2010. A demonstration of 4D-Var with a time-distributed background term. Q. J. R. Meteorol. Soc. DOI:10.1002/qj.645.
  • Fisher M. 2007. ‘The sensitivity of analysis errors to the specification of background error covariances’. In Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, June 2007. ECMWF: Reading, UK; pp 2736.
  • Fisher M, Leutbecher M, Kelly GA. 2005. On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc. 131: 32353246.
  • Hairer E, Lubich C, Wanner G. 2003. Geometric numerical integration illustrated by the Störmer–Verlet method. Acta Numerica 12: 399450.
  • Hólm EV. 2007. ‘Humidity control variable and supersaturation’. In Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation, June 2007. ECMWF: Reading, UK; pp 143150.
  • Ide K, Courtier P, Ghil M, Lorenc AC. 1997. Unified notation for data assimilation: Operational, sequential and variational. J. Meteorol. Soc. Jpn 75: 181189.
  • Johnson C, Hoskins BJ, Nichols NK. 2005a. A singular vector perspective of 4D-Var: Filtering and interpolation. Q. J. R. Meteorol. Soc. 131: 119.
  • Johnson C, Nichols NK, Hoskins BJ. 2005b. Very large inverse problems in atmosphere and ocean modelling. Int. J. Num. Meth. Fluids 47: 759771.
  • Klinker E, Rabier F, Kelly G, Mahfouf JF. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Q. J. R. Meteorol. Soc. 126: 11911215.
  • Laroche S, Gauthier P, Tanguay M, Pellerin S, Morneau J. 2007. Impact of the different components of 4DVAR on the global forecast system of the Meteorological Service of Canada. Mon. Weather Rev. 135: 23552364.
  • Lorenc AC. 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112: 11771194.
  • Lorenc AC, Payne TJ. 2007. 4D-Var and the butterfly effect. Q. J. R. Meteorol. Soc. 133: 607614.
  • Lorenc AC, Rawlins F. 2005. Why does 4D-Var beat 3D-Var? Q. J. R. Meteorol. Soc. 131: 32473257.
  • Piccolo C. 2010. Evolution of forecast error covariances in 4D-Var and ETKF method. Mon. Weather Rev. Submitted.
  • Rawlins F, Ballard SP, Bovis KJ, Clayton AM, Li D, Inverarity GW, Lorenc AC, Payne TJ. 2007. The Met Office global four-dimensional variational data assimilation scheme Q. J. R. Meteorol. Soc. 133: 347362.
  • Trémolet Y. 2006. Accounting for an imperfect model in 4D-Var. Q. J. R. Meteorol. Soc. 132: 24832584.
  • Trevisan A, D'Isidoro M, Talagrand O. 2010. Four-dimensional variational assimilation in the unstable subspace and the optimal subspace dimension. Q. J. R. Meteorol. Soc. 136: 487496.
  • Watkinson L. 2006. Four dimensional variational data assimilationfor Hamiltonian problems, PhD thesis. Department of Mathematics, University of Reading: Reading, UK.
  • Wolfram Research, Inc. 2007. Mathematica, Version 6.0. Champaign, IL.