SEARCH

SEARCH BY CITATION

References

  • Bechtold P, Krueger SK, Lewellen WS, van Meijgaard E, Moeng CH, Randall DA, van Ulden A, Wang S. 1996. Modeling a stratocumulus-topped PBL: Intercomparison among different one-dimensional codes and with large eddy simulation. Bull. Am. Meteorol. Soc. 77: 20332042.
  • Bélair S, Mailhot J, Girard C, Vaillancourt P. 2005. Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Weather Rev. 133: 19381960.
  • Blackadar AK. 1962. The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res. 67: 30953102.
  • Bougeault P, André J-C. 1986. On the stability of the third-order turbulence closure for the modeling of the stratocumulus-topped boundary layer. J. Atmos. Sci. 43: 15741581.
  • Bretherton CS, Uttal T, Fairall CW, Yuter SE, Weller RA, Baumgardner D, Comstock K, Wood R, Raga GB. 2004. The EPIC 2001 stratocumulus study. Bull. Am. Meteorol. Soc. 85: 967977.
  • Clement AC, Burgman R, Norris JR. 2009. Observational and model evidence for positive low-level cloud feedback. Science 325: 460464.
  • Emanuel KA. 1991. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 48: 23132335.
  • Emanuel KA, Živković-Rothman M. 1999. Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci. 56: 17661782.
  • Enomoto T, Kuwano-Yoshida A, Komori N, Ohfuchi W. 2008. Description of AFES 2: Improvements for high-resolution and coupled simulations. Pp 7797, chapter 5, in High resolution numerical modelling of the atmosphere and ocean, Ohfuchi W, Hamilton K (eds). Springer: New York.
  • Golaz J-C, Larson VE, Cotton WR. 2002. A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci. 59: 35403551.
  • Gordon CT, Rosati A, Gudgel R. 2000. Tropical sensitivity of a coupled model to specified ISCCP low clouds. J. Climate 13: 22392260.
  • Hahn CJ, Warren SG. 2007. A gridded climatology of clouds overland (197196) and ocean (195497) from surface observations worldwide.’ Numeric Data Product NDP-026E, Carbon Dioxide Information Analysis Center, US Department of Energy, Oak Ridge, Tennessee, DOI: 10.3334/CDIAC/cli.ndp026e.
  • Hannay C, Williamson DL, Hack JJ, Kiehl JT, Olson JG, Klein SA, Bretherton CS, Köhler M. 2009. Evaluation of forecasted southeast Pacific stratocumulus in the NCAR, GFDL, and ECMWF models. J. Climate 22: 28712889.
  • Haynes JM, Marchand RT, Luo Z, Bodas-Salcedo A, Stephens GL. 2007. A multipurpose radar simulation package: QuickBeam. Bull. Am. Meteorol. Soc. 88: 17231727.
  • Klein SA, Jakob C. 1999. Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon. Weather Rev. 127: 25142531.
  • Komori N, Taguchi B, Kuwano-Yoshida A, Sasaki H, Enomoto T, Nonaka M, Sasai Y, Honda M, Takaya K, Ishida A, Masumoto Y, Ohfuchi W, Nakamura H. 2010. High-resolution simulation of the global coupled atmosphere–ocean system using CFES: 23-year surface climatology. Submitted to Ocean Dyn.
  • Larson VE. 2004. Prognostic equations for cloud fraction and liquid water, and their relation to filtered density functions. J. Atmos. Sci. 61: 338351.
  • Le Treut H, Li Z-X. 1991. Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Clim. Dyn. 5: 175187.
  • Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB. 2000. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Weather Rev. 128: 31873199.
  • McCaa JR, Bretherton CS. 2004. A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part II: Regional simulations of marine boundary layer clouds. Mon. Weather Rev. 132: 883896.
  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE. 2007. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 88: 13831394.
  • Mellor GL. 1977. The Gaussian cloud model relations. J. Atmos. Sci. 34: 356358.
  • Mellor GL, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31: 17911806.
  • Mellor GL, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20: 851875.
  • Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ. 2008. Influence of the Gulf Stream on the troposphere. Nature 452: 206209.
  • Mochizuki T, Miyama T, Awaji T. 2007. A simple diagnostic calculation of marine stratocumulus cloud cover for use in general circulation models. J. Geophys. Res. 112: D06113, DOI:10.1029/2006JD007223.
  • Nakanishi M. 2001. Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Boundary-Layer Meteorol. 99: 349378.
  • Nakanishi M, Niino H. 2004. An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Boundary-Layer Meteorol. 112: 131.
  • Nakanishi M, Niino H. 2006. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorol. 119: 397407.
  • Nakanishi M, Niino H. 2009. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteorol. Soc. Jpn 87: 895912.
  • Nieuwstadt FTM, Duynkerke PG. 1996. Turbulence in the atmospheric boundary layer. Atmos. Res. 40: 111142.
  • Numaguti A, Takahashi M, Nakajima T, Sumi A. 1997. Description of CCSR/NIES atmospheric general circulation model. CGER Supercomputer Monograph Report No. 3, Center for Global Environmental Research, National Institute for Environmental Studies, 48 pp.
  • Ohfuchi W, Nakamura H, Yoshioka MK, Enomoto T, Takaya K, Peng X, Yamane S, Nishimura T, Kurihara Y, Ninomiya K. 2004. 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator—Preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simulator 1: 834.
  • Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R. 2007. The JRA-25 reanalysis. J. Meteorol. Soc. Jpn 85: 369432.
  • Peng MS, Ridout JA, Hogan TF. 2004. Recent modification of the Emanuel convective scheme in the Navy Operational Global Atmospheric Prediction System. Mon. Weather Rev. 132: 12541268.
  • Ricard JL, Royer JF. 1993. A statistical cloud scheme for use in an AGCM. Ann. Geophys. 11: 10951115.
  • Rossow WB, Schiffer RA. 1999. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80: 22612287.
  • Sassen K, Wang Z. 2008. Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett. 35: L04805, DOI:10.1029/2007GL032591.
  • Sekiguchi M, Nakajima T. 2008. A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model. J. Quant. Spectrosc. Radiat. Transfer 109: 27792793.
  • Siebesma AP, Jakob C, Lenderink G, Neggers RAJ, Teixeira J, Van Meijgaard E, Calvo J, Chlond A, Grenier H, Jones C, Köhler M, Kitagawa H, Marquet P, Lock AP, Müller F, Olmeda D, Severijns C. 2004. Cloud representation in general circulation models over the northern Pacific Ocean: A EUROCS intercomparison study. Q. J. R. Meteorol. Soc. 130: 32453267.
  • Slingo JM. 1980. A cloud parametrization scheme derived from GATE data for use with a numerical model. Q. J. R. Meteorol. Soc. 106: 747770.
  • Slingo JM. 1987. The development and verification of a cloud prediction scheme for the ECMWF model. Q. J. R. Meteorol. Soc. 113: 899927.
  • Small RJ, de Szoeke SP, Xie SP, O'Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S. 2008. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans 45: 274319.
  • Smith RNB. 1990. A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. R. Meteorol. Soc. 116: 435460.
  • Sommeria G, Deardorff JW. 1977. Subgrid-scale condensation in models of nonprecipitating clouds. J. Atmos. Sci. 34: 344355.
  • Teixeira J, Hogan TF. 2002. Boundary layer clouds in a global atmospheric model: Simple cloud cover parameterizations. J. Climate 15: 12611276.
  • Teixeira J, May P, Flatau M, Hogan TF. 2008. SST sensitivity of a global ocean–atmosphere coupled system to the parameterization of boundary layer clouds. J. Mar. Syst. 69: 2936.
  • Teixeira J, Cardoso S, Bonazzola M, Cole J, Del Genio A, DeMott C, Franklin C, Hannay C, Jakob C, Jiao Y, Karlsson J, Kitagawa H, Koehler M, Kuwano-Yoshida A, Le Drian C, Lock A, Miller MJ, Marquet P, Martins J, Mechoso CR, Meijgaard EV, Meinke I, Miranda PMA, Mironov D, Neggers R, Pan HL, Randall DA, Rasch PJ, Rockel B, Rossow WB, Ritter B, Siebesma AP, Soares P, Turk FJ, Vaillancourt P, Von Engeln A, Zhao M. 2010. Tropical and sub-tropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific Cross-section Intercomparison (GPCI). Submitted to J. Climate.
  • Thiébaux J, Rogers E, Wang W, Katz B. 2003. A new high-resolution blended real-time global sea surface temperature analysis. Bull. Am. Meteorol. Soc. 84: 645656.
  • Tompkins AM. 2002. A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci. 59: 19171942.
  • Wang Y. 2001. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part I: Model description and control experiment. Mon. Weather Rev. 129: 13701394.
  • Wang Y, Xie S-P, Xu H, Wang B. 2004. Regional model simulations of marine boundary layer clouds over the southeast Pacific off South America. Part I: Control experiment. Mon. Weather Rev. 132: 274296.
  • Webb MJ, Senior C, Bony S, Morcrette J-J. 2001. Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. Clim. Dyn. 17: 905922.
  • White PW. 2003. ‘IFS documentation. Part IV: Physical processes (CY23R4).’ ECMWF: Shinfield Park, Reading, United Kingdom, 166 pp.
  • Wood R, Hartmann DL. 2006. Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate 19: 17481764.
  • Wood R, Mechoso CR, Bretherton C, Huebert B, Weller R. 2007. The VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS). US CLIVAR Variations 5: 15.
  • Xu H, Wang Y, Xie S-P. 2004. Effects of the Andes on eastern Pacific climate: A regional atmospheric model study. J. Climate 17: 589602.
  • Xu K-M, Randall DA. 1996. A semiempirical cloudiness parameterization for use in climate models. J. Atmos. Sci. 53: 30843102.
  • Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI. 2004. Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. 109: D19105, DOI:10.1029/2003JD004457.
  • Zwally HJ, Schutz R, Palm S, Hart W, Hlavka S, Spinhirne J, Welton E. 2009. ‘GLAS/ICESat L2 global planetary boundary layer and elevated aerosol layer heights V018, 15 October to 18 November 2003.’ National Snow and Ice Data Center: Boulder, Colorado, USA. Digital media.