SEARCH

SEARCH BY CITATION

References

  • Althausen D, Müller D, Ansmann A, Wandinger U, Hube H, Clauder E, Zörner S. 2000. Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Oceanic Technol. 17: 14691482.
  • Barnes JE, Kaplan T, Vömel H, Read WG. 2008. NASA/Aura/Microwave Limb Sounder water vapor validation at Mauna Loa Observatory by Raman lidar. J. Geophys. Res. 113: D15S03, DOI:10.1029/2007JD008842.
  • Behrendt A, Wulfmeyer V, Di Girolamo P, Kiemle C, Bauer H-S, Schaberl T, Summa D, Whiteman DN, Demoz BB, Browell EV, Ismail S, Ferrare R, Kooi S, Ehret G, Wang J. 2007a. Intercomparison of water vapor data measured with lidar during IHOP_2002. Part I: Airborne to ground-based lidar systems and comparisons with chilled-mirror hygrometer radiosondes. J. Atmos. Oceanic Technol. 24: 321.
  • Behrendt A, Wulfmeyer V, Kiemle C, Ehret G, Flamant C, Schaberl T, Bauer H-S, Kooi S, Ismail S, Ferrare R, Browell EV, Whiteman DN. 2007b. Intercomparison of water vapor data measured with lidar during IHOP_2002. Part II: Airborne-to-airborne systems. J. Atmos. Oceanic Technol. 24: 2239.
  • Behrendt A, Wulfmeyer V, Riede A, Wagner G, Pal S, Bauer H, Radlach M, Späth F. 2009. ‘Three-dimensional observations of atmospheric humidity with a scanning differential absorption lidar.’ In Remote sensing of clouds and the atmosphere XIV, Picard RH, Schäfer K, Comorón A, Kassianov EI, Mertens CJ (eds). Proc. SPIE 7475: DOI: 10.1117/12.83514.
  • A Pal, S Aoshima, F Bender, M Blyth, A Corsmeier, U Cuesta, J Dick, G Dorninger, M Flamant, C Di Girolamo, P Gorgas, T Huang, Y Kalthoff, N Khodayar, S Mannstein, H Träumner, K Wieser, A Wulfmeyer, V 2011. Observation of convection initiation processes with a suite of state-of-the-art research instruments during COPS IOP 8b. Q. J. R. Meteorol. Soc. 137(S1): 81100, DOI: 10.1002/qj.758.
  • Bennett, LJ Blyth, AM Burton, RR Gadian, AM Weckwerth, TM Behrendt, A Di Girolamo, P Dorninger, M Lock, S-J Smith, VH Mobbs, SD 2011. Initiation of convection over the Black Forest mountains during COPS IOP 15a. Q. J. R. Meteorol. Soc. 137(S1): 176189.
  • Bhawar R, Bianchini G, Bozzo A, Calvello MR, Cacciani M, Carlotti M, Castagnoli F, Cuomo V, Di Girolamo P, Di Iorio T, Di Liberto L, di Sarra A, Esposito F, Fiocco G, Fuà D, Grieco G, Maestri T, Masiello G, Muscari G, Palchetti L, Papandrea E, Pavese G, Restieri R, Rizzi R, Romano F, Serio C, Summa D, Todini G, Tosi E. 2008. Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band. Geophys. Res. Lett. 35: L04812, DOI:10.1029/2007GL032207.
  • Bösenberg J. 1998. Ground-based differential absorption lidar for water-vapor and temperature profiling: Methodology. Appl. Opt. 37: 38453860.
  • Bosser P, Bock O, Thom C, Pelon J. 2007. Study of the statistics of water vapor mixing ratio determined from Raman lidar measurements. Appl. Opt. 46: 81708180.
  • Bosser P, Bock O, Thom C, Pelon J, Willis P. 2010. A case study of using Raman lidar measurements in high-accuracy GPS applications. J. Geodesy 84: 251265.
  • Browning KA, Morcrette CJ, Nicol J, Blyth AM, Bennett LJ, Brooks BJ, Marsham J, Mobbs SD, Parker DJ, Perry F, Clark PA, Ballard SP, Dixon MA, Forbes RM, Lean HW, Li Z, Roberts NM, Corsmeier U, Barthlott C, Deny B, Kalthoff N, Khodayar S, Kohler M, Kottmeier C, Kraut S, Kunz M, Lenfant J, Wieser A, Agnew JL, Bamber D, McGregor J, Beswick KM, Gray MD, Norton E, Ricketts HMA, Russell A, Vaughan G, Webb AR, Bitter M, Feuerle T, Hankers R, Schulz H, Bozier KE, Collier CG, Davies F, Gaffard C, Hewison TJ, Ladd DN, Slack EC, Waight J, Ramatschi M, Wareing DP, Watson RJ. 2007. The Convective Storm Initiation Project. Bull. Am. Meteorol. Soc. 88: 19391955.
  • Bruneau D, Quaglia P, Flamant C, Meissonnier M, Pelon J. 2001a. Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. I: System description. Appl. Opt. 40: 34503461.
  • Bruneau D, Quaglia P, Flamant C, Pelon J. 2001b. Airborne lidar LEANDRE II for water-vapor profiling in the troposphere. II: First results. Appl. Opt. 40: 34623475.
  • Cahen C, Megie G, Flamant P. 1982. Lidar monitoring of the water vapor cycle in the troposphere. J. Appl. Meteorol. 21: 15061515.
  • Chaboureau, J-P Richard, E Pinty, J-P Flamant, C Di Girolamo, P Kiemle, C Behrendt, A Chepfer, H Chiriaco, M Wulfmeyer, V 2011. Long-range transport of Saharan dust and its radiative impact on precipitation forecast over western Europe. Q. J. R. Meteorol. Soc. 137(S1): 236251.
  • Cooney JA. 1971. Comparisons of water vapor profiles obtained by radiosonde and laser backscatter. J. Appl. Meteorol. 10: 301308.
  • Corsmeier U, Kalthoff N, Barthlott C, Behrendt A, Di Girolamo P, Dorninger M, Handwerker J, Kottmeier C, Mahlke H, Mobbs SD, Norton EG, Wickert J, Wulfmeyer V 2011. Processes driving deep convection over complex terrain: a multi-scale analysis of observations from COPS IOP 9c. Q. J. R. Meteorol. Soc. 137(S1): 137155, DOI: 10.1002/qj.754.
  • Crook NA. 1996. Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Weather Rev. 124: 17671785.
  • Di Girolamo P, Marchese R, Whiteman DN, Demoz BB. 2004. Rotational Raman lidar measurements of atmospheric temperature in the UV. Geophys. Res. Lett. 31: L01106, DOI:10.1029/2003GL018342.
  • Di Girolamo P, Behrendt A, Wulfmeyer V. 2006. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: Performance simulations, Appl. Opt. 45: 24742494.
  • Di Girolamo P, Summa D, Ferretti R. 2009a. Multparameter Raman lidar measurements for the characterization of a dry stratospheric intrusion event. J. Atmos. Oceanic Technol. 26: 17421762.
  • Di Girolamo P, Summa D, Lin R-F, Maestri T, Rizzi R, Masiello G. 2009b. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties. Atmos. Chem. Phys. 9: 87998811.
  • Di Girolamo P, Summa D, Bhawar R, Di Iorio T, Cacciani M, Veselovskii I, Kolgotin A. 2009c. ‘Observation of a Saharan dust outbreak on 1–2 August 2007: Determination of size and microphysical particle parameters.’ Pp 15 in Proceedings of the 8th International Symposium on tropospheric profiling, S04-O06, Delft, The Netherlands, October 2009. Apituley A, Russchenberg HWJ, Monna WAA (eds)..
  • Groenemeijer P, Barthlott C, Corsmeier U, Handwerker J, Kohler M, Kottmeier C, Mahlke H, Wieser A, Behrendt A, Pal S, Radlach M, Wulfmeyer V, Trentmann J. 2009. Observations of kinematics and thermodynamic structure surrounding a convective storm cluster over a low mountain range. Mon. Weather Rev. 137: 585602.
  • Griaznov V, Veselovskii I, Di Girolamo P, Korenskii M, Summa D. 2007. Spatial distribution of doubly scattered polarized laser radiation in the focal plane of a lidar receiver. Appl. Opt. 46: 68216830.
  • Herold C. 2009. Wasserdampf- und Temperaturmessung mittels Lidar w ä hrend COPS und SAMUM.’ Diploma thesis, University of Leipzig, 80 pp.
  • Kiemle C, Wirth M, Fix A, Rahm S, Corsmeier U, Di Girolamo P. 2011. Latent heat fluxes over complex terrain from airborne water vapour and wind lidars. Q. J. R. Meteorol. Soc. 137(S1): 190203, DOI: 10.1002/qj.757.
  • Kottmeier C, Kalthoff N, Corsmeier U, Barthlott C, Van Baelen J, Behrendt A, Behrendt R, Blyth A, Coulter R, Crewell S, Di Girolamo P, Dorninger M, Flamant C, Foken T, Hagen M, Hauck C, Höller H, Konow H, Kunz M, Mahlke H, Mobbs SD, Richard E, Steinacker R, Weckwerth T, Wieser A, Wulfmeyer V. 2008. Mechanisms initiating deep convection over complex terrain during COPS. Special issue on quantitative precipitation forecasting. Meteorol. Z. 17: 931948.
  • Melfi SH. 1972. Remote measurements of the atmosphere using Raman scattering. Appl. Opt. 11: 16051610.
  • Melfi SH, Lawrence JD, McCormick MP. 1969. Observation of Raman scattering by water vapor in the atmosphere. Appl. Phys. Lett. 15: 295297.
  • Mona L, Cornacchia C, D'Amico G, Di Girolamo P, Pappalardo G, Pisani G, Summa D, Wang X, Cuomo V. 2007. Characterization of the variability of the humidity and cloud fields as observed from a cluster of ground-based lidar systems. Q. J. R. Meteorol. Soc. 133S3 257271.
  • Rotach MW, Ambrosetti P, Ament F, Appenzeller C, Arpagaus M, Bauer H-S, Behrendt A, Bouttier F, Buzzi A, Corazza M, Davolio S, Denhard M, Dorninger M, Fontannaz L, Frick J, Fundel F, Germann U, Gorgas T, Hegg C, Hering A, Keil C, Liniger MA, McTaggart-Cowan R, Marsigli C, Montaini A, Mylne K, Ranzi R, Richard E, Rossa A, Santos-Muñoz D, Schär C, Seity Y, Staudinger M, Stoll M, Volkert H, Walser A, Wang Y, Werhahn J, Wulfmeyer V, Zappa M. 2009. MAP D-PHASE: Real-time demonstration of weather forecast quality in the Alpine region. Bull. Am. Meteorol. Soc. 90: 13211336.
  • Rotunno R, Houze Jr RA, 2007. Lessons on orographic precipitation from the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc. 133: 811830.
  • Suortti TM, Kats A, Kivi R, Kämpfer N, Leiterer U, Miloshevich LM, Neuber R, Paukkunen A, Ruppert P, Vömel H, Yushkov V. 2008. Tropospheric comparisons of Vaisala radiosondes and balloon-borne frost-point and Lyman-α hygrometers during the LAUTLOS-WAVVAP Experiment. J. Atmos. Oceanic Technol. 25: 149166.
  • Tesche M, Ansmann A, Müller D, Althausen D, Mattis I, Heese B, Freudenthaler V, Wiegner M, Esselborn M, Pisani G, Knippertz P. 2009. Vertical profiling of Saharan dust with Raman lidars and air-borne HSRL in southern Morocco during SAMUM. Tellus 61B: 144164.
  • Wagner G, Wulfmeyer V, Behrendt A. 2010. High-average-power Ti:Sapphire:laser as transmitter of a scanning water-vapor DIAL. Appl. Opt., in preparation.
  • Warnecke G. 1997. Meteorologie und Umwelt. Springer-Verlag.
  • Weckwerth TM, Parsons DB, Moore JA, Koch SE, Demoz BB, LeMone MA, Flamant C, Geerts B, Wang J, Feltz WF. 2004. An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Am. Meteorol. Soc. 85: 253277.
  • Werner C, Herrmann H. 1981. Lidar measurements of the vertical absolute humidity distribution in the boundary layer. J. Appl. Meteorol. 20: 476481.
  • Whiteman DN. 2003. Examination of the traditional Raman lidar technique. I: Evaluating the temperature-dependent lidar equations. Appl. Opt. 42: 25712592.
  • Whiteman DN, Demoz BB, Di Girolamo P, Comer J, Veselovskii I, Evans K, Wang Z, Sabatino D, Schwemmer G, Gentry B, Lin R-F, Behrendt A, Wulfmeyer V, Browell E, Ferrare R, Ismail S, Wang J. 2006. Raman lidar measurements during the International H2O Project. Part II: Case studies. J. Atmos. Oceanic Technol. 23: 170183.
  • Wirth M, Fix A, Mahnke P, Schwarzer H, Schrandt F, Ehret G. 2009. The airborne multi-wavelength water vapor differential absorption lidar WALES: System design and performance. Appl. Phys. B 96: 201213.
  • Wulfmeyer V, Bösenberg J. 1998. Ground-based differential absorption lidar for water-vapor profiling: Assessment of accuracy, resolution, and meteorological applications. Appl. Opt. 37: 38253844.
  • Wulfmeyer V, Bösenberg J 1996. Single-mode operation of an injection-seeded alexandrite ring laser for application in water vapor and temperature differential absorption lidar. Opt. Lett. 21: 11501152.
  • Wulfmeyer V, Walther C. 2001a. Future performance of ground-based and airborne water-vapor differential absorption lidar. I: Overview and theory. Appl. Opt. 40: 53045320.
  • Wulfmeyer V, Walther C. 2001b. Future performance of ground-based and airborne water-vapor differential absorption lidar. II: Simulations of the precision of a near-infrared, high-power system. Appl. Opt. 40: 53215336.
  • Wulfmeyer V, Bauer H-S, Grzeschik M, Behrendt A, Vandenberghe F, Browell EV, Ismail S, Ferrare RA. 2006. Four-dimensional variational assimilation of water vapor differential absorption lidar data: The first case study within IHOP_2002. Mon. Weather Rev. 134: 209230.
  • Wulfmeyer V, Behrendt A, Bauer H-S, Kottmeier C, Corsmeier U, Blyth A, Craig G, Schumann U, Hagen M, Crewell S, Di Girolamo P, Flamant C, Miller M, Montani A, Mobbs SD, Richard E, Rotach MW, Arpagaus M, Russchenberg H, Schlüssel P, König M, Gärtner V, Steinacker R, Dorninger M, Turner DD, Weckwerth T, Hense A, Simmer C. 2008. The Convective and Orographically-induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Am. Meteorol. Soc. 89: 14771486.
  • Wulfmeyer V, Behrendt A, Kottmeier C, Corsmeier U, Barthlott C, Craig GC, Hagen M, Althausen D, Aoshima F, Arpagaus M, Bauer HS, Bennett L, Blyth A, Brandau C, Champollion C, Crewell S, Dick G, Di Girolamo P, Dorninger M, Dufournet Y, Eigenmann R, Engelmann R, Flamant C, Foken T, Gorgas T, Grzeschik M, Handwerker J, Hauck C, Höller H, Junkermann W, Kalthoff N, Kiemle C, Klink S, König M, Krauss L, Long CN, Madonna F, Mobbs SD, Neininger B, Pal S, Peters G, Pigeon G, Richard E, Rotach MW, Russchenberg H, Schwitalla T, Smith V, Steinacker R, Trentmann J. Turner DD, van Baelen J, Vogt S, Volkert H, Weckwerth T, Wernli H, Wieser A, Wirth M. 2010. The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase, and first highlights. Q. J. R. Meteorol. Soc. (this issue).