SEARCH

SEARCH BY CITATION

References

  • Apsley DD, Castro IA. 1997. A limited-length-scale kε model for the neutral and stably-stratified atmospheric boundary layer. Boundary-Layer Meteorol. 83: 7598.
  • Beyrich F. 1995. Mixing-length estimation in the convective boundary layer using sodar data. Boundary-Layer Meteorol. 74: 118.
  • Beyrich F, Weill A. 1993. Some aspects of determining the stable boundary-layer depth from sodar data. Boundary-Layer Meteorol. 63: 97116.
  • Blackadar AK. 1962. The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J. Geophys. Res. 67: 30953102.
  • Blackadar AK. 1965. ‘A single-layer theory of the vertical distribution of wind in a baroclinic neutral atmospheric boundary layer’. In Flux of heat and momentum in the planetary boundary layer of the atmosphere. Final Report, AFCRL-65-531. Pennsylvania State University: 122.
  • Blackadar AK, Tennekes H. 1968. Asymptotic similarity in neutral barotropic planetary boundary layers. J. Atmos. Sci. 25: 10151020.
  • Busch NE, Panofsky HA. 1968. Recent spectra of atmospheric turbulence. Q. J. R. Meteorol. Soc. 94: 132148.
  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF. 1971. Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28: 181189.
  • Caughey SJ, Palmer SG. 1979. Some aspects of turbulence structure through the depth of the convective boundary layer. Q. J. R. Meteorol. Soc. 105: 811827.
  • Cuxart J, Bougeault P, Redelsperger J-L. 2000. A turbulence scheme allowing for mesoscale and large-eddy simulations. Q. J. R. Meteorol. Soc. 126: 130.
  • Delage Y. 1974. A numerical study of the nocturnal atmospheric boundary layer. Q. J. R. Meteorol. Soc. 100: 351364.
  • de Roode SR, Duynkerke PG. 2004. Large-eddy simulation: How large is large enough? J. Atmos. Sci. 61: 403421.
  • Detering HW, Etling D. 1985. Application of the Eε turbulence model to the atmospheric boundary layer. Boundary-Layer Meteorol. 33: 113133.
  • ESDU. 1985. Characteristics of atmospheric turbulence near the ground. Part II: Single point data for strong winds (neutral atmosphere). ESDU 85020. Engineering Sciences Data Unit: London.
  • Frandsen S, Jørgensen HE, Sørensen JD. 2008. Relevant criteria for testing the quality of models for turbulent wind speed fluctuations. J. Solar Energy Eng. 130: 031016.
  • Grachev AA, Fairall CW, Bradley EF. 2000. Convective profile constraints revisited. Boundary-Layer Meteorol. 94: 495515.
  • Gryning S-E, Batchvarova E, Brümmer B, Jørgensen H, Larsen S. 2007. On the extension of the wind profile over homogeneous terrain beyond the surface layer. Boundary-Layer Meteorol. 124 251268.
  • Högström U. 1988. Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Meteorol. 42: 5578.
  • Högström U. 1990. Analysis of turbulence structure in the surface-layer with a modified similarity formulation for near-neutral conditions. J. Atmos. Sci.: 47: 19491972.
  • Højstrup J. 1982. Velocity spectra in the unstable boundary layer. J. Atmos. Sci. 39: 22392248.
  • Højstrup J, Barthelmie RJ, Källstrand B. 1997. ‘Boundary-layer heights derived from velocity spectra’. In The determination of the mixing heightCurrent progress and problems. EUROSAP Workshop proceedings, Risø-R-997(EN), Risø National Lab., Denmark. 2730.
  • Holt T, Raman S. 1988. A review and comparative evaluation of multilevel boundary-layer parameterizations for first-order and turbulent kinetic energy closure schemes. Rev. Geophys. 26 761780.
  • Holtslag AAM, Moeng C-H. 1991. Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci. 48: 16901698.
  • IEC. 2005. Wind turbines—Design requirements. IEC 61400-1, edition 3. International Electrotechnical Commission: Geneva, Switzerland.
  • Jonker HJJ, Duynkerke PG, Cujpers JWM. 1999. Mesoscale fluctuations in scalars generated by boundary-layer convection. J. Atmos. Sci. 56: 801808.
  • Jørgensen HE, Mikkelsen T, Gryning S-E, Larsen S, Astrup P, Sørensen PE. 2010. ‘Measurements from Høvsøre met mast’. Risoe-R-1592(EN). Risø National Laboratory: Roskilde, Denmark. http://www.risoe.dtu.dk.
  • Kaimal JC, Finnigan JJ. 1994. Atmospheric boundary layer flows: Their structure and measurement. Oxford University Press: Oxford, UK.
  • Kaimal JC, Wyngaard JC, Izumi Y, Cote OR. 1972. Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98: 563589.
  • Lacser A, Arya SPS. 1986. A comparative assessment of mixing-length parameterizations in the stably stratified nocturnal boundary layer (NBL). Boundary-Layer Meteorol. 36: 5370.
  • Lenderink G, Holtslag AAM. 2004. An updated length-scale formulation for turbulent mixing in clear and cloudy boundary layers. Q. J. R. Meteorol. Soc. 130: 34053427.
  • Lettau HH. 1962. Theoretical wind spirals in the boundary layer of a barotropic atmosphere. Beitr. Phys. Atmos. 35: 195212.
  • Lothon M, Lenschow DH, Mayor SD. 2009. Doppler lidar measurements of vertical velocity spectra in the convective planetary boundary layer. Boundary-Layer Meteorol. 132: 205226.
  • Mann J. 1994. The spatial structure of neutral atmospheric surface-layer turbulence. J. Fluid Mech. 273: 141168.
  • Mann J. 1998. Wind field simulation. Prob. Engin. Mech. 13: 269282.
  • Mellor CL, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci. 31: 17911806.
  • Monin AS, Obukhov AM. 1954. Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz. Inst. AN SSSR 24: 163187.
  • Peña A, Gryning S-E, Hasager CB. 2008. Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Boundary-Layer Meteorol. 129: 479495.
  • Peña A, Gryning S-E, Hasager CB. 2010a. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theoret. Appl. Climatol. 100: 325335.
  • Peña A, Gryning S-E, Mann J, Hasager CB. 2010b. Length scales of the neutral wind profile over homogeneous terrain. J. Appl. Meteorol. Climatol. 49: 792806.
  • Prandtl L. 1925. Bericht über Untersuchungen zur ausgebildeten Turbulenz (Report on the investigations of developed turbulence). Zs. angew. Math. Mech. 5: 136139.
  • Prandtl L. 1932. Meteorologische Anwendung der Strömungslehre (Meteorological application of fluid mechanics). Beitr. Phys. Atmos. 19: 188202.
  • Rossby C-G, Montgomery RB. 1935. The layer of frictional influence in wind and ocean currents. Pap. Phys. Oceanogr. Meteorol. 33.
  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P. 2000. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 34: 10011027.
  • Sjöblom A, Smedman A-S. 2003. Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method. Boundary-Layer Meteorol. 109: 125.
  • Stull RB. 1988. An introduction to Boundary-Layer Meteorology. Kluwer Academic Publishers.
  • Tennekes H. 1982. Similarity relations, scaling laws and spectral dynamics. In Atmospheric turbulence and air pollution modelling, Nieuwstadt FTM, van Dop H. (eds.) D. Reidel: Dordrecht, the Netherlands. 3768.
  • van de Wiel BJH, Moene AF, De Ronde WH, Jonker HJJ. 2008. Local similarity in the stable boundary layer and mixing-length approaches: Consistency of concepts. Boundary-Layer Meteorol. 128 103116.
  • Zilitinkevich SS, Deardorf JW. 1974. Similarity theory for planetary boundary layer of time-dependent height. J. Atmos. Sci. 31: 14491452.