SEARCH

SEARCH BY CITATION

References

  • Allen JS, Barth JA, Newberger PA. 1990. On the intermediate models for barotropic continental shelf and slope flow fields. Part I: Formulation and comparison of exact solutions. J. Phys. Oceanogr 20: 10171042.
  • Arnold VI. 1966. On an a priori estimate in the theory of hydrodynamical stability. Izv. Vyssh. Uchebn. Zaved. Matematika 54: 3–5. (English transl. 1969.) Am. Math. Soc. Transl., Ser. 2 79: 267269.
  • Blumen W. 1968. On the stability of quasi-geostrophic flow. J. Atmos. Sci. 25: 929931.
  • Charney JG. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4: 135163.
  • Charney JG, Stern M. 1962. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 19: 159172.
  • Cho HR, Shepherd TG, Valdimirov VA. 1983. Application of the direct Liapunov method to the problem of symmetric stability in the atmosphere. J. Atmos. Sci. 50: 822836.
  • Eliassen A. 1959. On the formation of fronts in the atmosphere. In The Atmosphere and the Sea in Motion. Rockefeller Institute Press: New York; pp 277287.
  • Eliassen A. 1962. On the vertical circulation in frontal zones. Geofys. Publikasjoner 24: 147160.
  • Eliassen A. 1983. The Charney–Stern theorem on barotropic–baroclinic instability. Pure Appl. Geophys. 121: 563572.
  • Holm DD, Marsden JE, Ratiu T, Weinstein A. 1985. Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123: 1116.
  • Holton JR. 1992. An introduction to dynamic meteorology, 3rd edn. Academic Press.
  • Hoskins BJ. 1975. The geostrophic momentum approximation and semi-geostrophic equations. J. Atmos. Sci. 32: 233242.
  • Hoskins BJ. 1976. Baroclinic waves and frontogenesis. Part I: Introduction and Eady waves. Q. J. R. Meteorol. Soc. 102: 103122.
  • Hoskins BJ. 1982. The mathematical theory of frontogenesis. Ann. Rev. Fluid Mech. 14: 131151.
  • Hoskins BJ, Bretherton FP. 1972. Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29: 1137.
  • Hoskins BJ, West NV. 1979. Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows—cold and warm fronts. J. Atmos. Sci. 36: 16631680.
  • Hoskins BJ, McIntyre ME, Robertson AW. 1985. The use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111: 877946.
  • Kuo HL. 1949. Dynamic instability of two-dimensional nondivergent flow in a baroclinic atmosphere. J. Meteorol. 6: 105122.
  • Kuo HL. 1973. Dynamics of quasio-geostrophic flows and instability theory. Adv. Appl. Mech. 13: 247330.
  • Kushner PJ, Shepherd TG. 1995a. Wave-activity conservation laws and stability theorems for semi-geostrophic dynamics. Part 1. Pseudomomentum-based theory. J. Fluid. Mech. 290: 67104.
  • Kushner PJ, Shepherd TG. 1995b. Wave-activity conservation laws and stability theorems for semi-geostrophic dynamics. Part II. Pseudoenergy-based theory. J. Fluid. Mech. 290: 105129.
  • Kushner PJ, McIntyre ME, Shepherd TG. 1997. Coupled Kelvin-wave and mirage-wave instabilities in semi-geostrophic dynamics. J. Phys. Oceanogr. 28: 513518.
  • Malardel S, Thorpe AJ, Joly A, Noble B, Daniel JW. 1997. Consequences of the geostrophic momentum approximation on barotropic instability. J. Atmos. Sci. 54: 103112.
  • McIntyre ME, Norton W. 2000. Potential vorticity inversion on a hemisphere. J. Atmos. Sci. 57: 12141235.
  • McIntyre ME, Shepherd TG. 1987. An exact local conservation theorem for finite-amplitude disturbances to non-parallel shear flows, with remarks on Hamiltonian structure and on Arnold's stability theorems. J. Fluid. Mech. 181: 527565.
  • Mu M, Zeng QC, Shepherd TG, Liu YM. 1994. Nonlinear stability of multilayer quasi-geostrophic flow. J. Fluid. Mech. 264: 165184.
  • Mu M, Shepherd TG, Swanson K. 1996. On the nonlinear symmetric stability and nonlinear saturation of symmetric instability. J. Atmos. Sci. 53: 29182923.
  • Pedlosky J. 1987. Geophysical Fluid Dynamics, 2nd edn. Springer: Berlin.
  • Ren SZ. 1998. Linear stability of the three-dimensional semi-geostrophic model in geometric coordinates. J. Atmos. Sci. 55: 33923402.
  • Ren SZ. 1999. Linear stability of the shallow water semi-geostrophic dynamics. Astrophys. Geophys. Fluid. Dyn. 90: 189227.
  • Ren SZ. 2000a. Finite-amplitude wave-activity invariants and nonlinear stability theorems for shallow water semi-geostrophic dynamics. J. Atmos. Sci. 57: 33883397.
  • Ren SZ. 2000b. On the wave-activity invariants and stability of the two-layer shallow water semi-geostrophic model. Q. J. R. Meteorol. Soc. 126: 13211342.
  • Ren SZ, Shepherd TG. 1997. Lateral boundary contributions to wave-activity invariants and nonlinear stability theorems for balanced dynamics. J. Fluid. Mech. 345: 287305.
  • Ripa P. 1983. General stability conditions for zonal flows in a one-layer model on the β-plane or the sphere. J. Fluid Mech. 222: 119137.
  • Shepherd TG. 1990. Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys. 32: 287338.
  • Shutts GJ, Cullen MJP. 1987. Parcel stability and its relation to semigeostrophic theory. J. Atmos. Sci. 44: 13181330.