SEARCH

SEARCH BY CITATION

References

  • Barkmeijer J, Buizza R, Palmer TN. 1999. 3D-Var Hessian singular vectors and their potential use in the ECMWF Ensemble Prediction System. Q. J. R. Meteorol. Soc. 125: 23332351.
  • Brier GW. 1950. Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78: 13.
  • Buizza R, Palmer TN. 1995. The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci. 52: 14341456.
  • Buizza R, Petroliagis T, Palmer TN, Barkmeijer J, Hamrud M, Hollingsworth A, Simmons A, Wedi N. 1998. Impact of model resolution and ensemble size on the performance of an Ensemble Prediction System. Q. J. R. Meteorol. Soc. 124: 19351960.
  • Buizza R, Miller M, Palmer TN. 1999a. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125: 28872908.
  • Buizza R, Hollingsworth A, Lalaurette F, Ghelli A. 1999b. Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System. Weather and Forecasting 14: 168189.
  • Buizza R, Hollingsworth A, Lalaurette F, Ghelli A. 2000. Reply to comments by Wilson and by Juras. Weather and Forecasting 15: 367369.
  • Buizza R, Richardson DS, Palmer TN. 2003. Benefits of increased resolution in the ECMWF ensemble system and comparison with poor-man's ensembles. Q. J. R. Meteorol. Soc. 129: 12691288.
  • Ehrendorfer M. 1994. The Liouville equation and its potential usefulness for the prediction of forecast skill. Part I: Theory. Mon. Weather Rev. 122: 703713.
  • Ehrendorfer M, Beck A. 2003. Singular vector-based multivariate normal sampling in ensemble prediction. ECMWF Technical Memo. No. 416.
  • Epstein ES. 1969. Stochastic dynamic prediction. Tellus 21: 739759.
  • Fleming RJ. 1971a. On stochastic dynamic prediction. I. The energetics of uncertainty and the question of closure. Mon. Weather Rev. 99: 851872.
  • Fleming RJ. 1971b. On stochastic dynamic prediction. II. Predictability and utility. Mon. Weather Rev. 99: 927938.
  • Gleeson TA. 1970. Statistical-dynamical predictions. J. Appl. Meteorol. 9: 333344.
  • Janssen P, Bidlot J-R, Abdalla S, Hersbach H. 2005. Progress in ocean wave forecasting at ECMWF. ECMWF Technical Memo. No. 478. (Available from ECMWF, Shinfield Park, Reading RG2 9AX, UK).
  • Leith CE. 1974. Theoretical skill of Monte Carlo forecasts. Mon. Weather Rev. 102: 409418.
  • Malguzzi P, Grossi G, Buzzi A, Ranzi R, Buizza R. 2006. The 1966 ‘century’ flood in Italy: A meteorological and hydrological revisitation. J. Geophys. Res. 111: D24106, doi: 10.1029/2006JD007111.
  • Mason I. 1982. A model for assessment of weather forecasts. Aust. Meteorol. Mag. 30: 291303.
  • Molteni F, Buizza R, Palmer TN, Petroliagis T. 1996. The ECMWF Ensemble Prediction System: Methodology and validation. Q. J. R. Meteorol. Soc. 122: 73119.
  • Saetra Ø, Bidlot J-R. 2004. Potential benefits of using probabilistic forecasts for waves and marine winds based on the ECMWF Ensemble Prediction System. Weather and Forecasting 19: 673689.
  • Swets JA. 1986. Form of empirical ROCs in discrimination and diagnostic tasks: Implications for theory and measurement of performance. Psychol. Bull. 99: 181198.
  • Szunyogh I, Toth Z. 2002. The effect of increased horizontal resolution on the NCEP global ensemble mean forecasts. Mon. Weather Rev. 130: 11251143.
  • Tracton MS, Kalnay E. 1993. Operational ensemble prediction at the National Meteorological Center: Practical aspects. Weather and Forecasting 8: 379398.
  • Wilks DS. 1995. Statistical methods in the atmospheric sciences. Academic Press: San Diego.
  • Wilson LJ. 2000. Comments on ‘Probabilistic predictions of precipitation using the ECMWF Ensemble Prediction System’. Weather and Forecasting 15: 361364.