SEARCH

SEARCH BY CITATION

References

  • Arakawa A, Konor C. 1996. Vertical differencing of the primitive equations based on the Charney-Phillips grid in hybrid σ-p vertical coordinates. Monthly Weather Review 124: 511528.
  • Arakawa A, Lamb V. 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Comp. Phys. 17: 173265.
  • Bannister R. 2008. A review of forecast error covariance statistics in atmospheric variational data assimilation II: Modelling the forecast error covariance statistics. Q. J. R. Meteorol. Soc 134 19711996.
  • Bannister R, Cullen M. 2007. A regime-dependant balanced control variable based on potential vorticity. Proceedings of the ECMWF workshop on flow-dependent aspects of data assimilation, 11–13 June 2007. ECMWF, Reading, UK.
  • Bannister R, Cullen M. 2009. New PV-based Control Variables for Met Office VAR. DARC Technical Report Version 7. Data Assimilation Research Centre, University of Reading.
  • Bannister R, Katz D, Cullen M, Lawless A, Nichols N. 2007. Modelling of forecast errors in geophysical fluid flows. Int. J. Numer. Meth. Fluids. 56: 11471153.
  • Barros S. 1991. Multigrid methods for two-and three-dimensional Poisson-type equations on the sphere. Journal of Computational Physics. 92: 313348.
  • Birkhoff G, Varga R, Young D. 1962. Alternating direction implicit methods. Advances in Computers. 3: 189273.
  • Börm S, Hiptmair R. 2001. Analysis of tensor product multigrid. Numerical Algorithms. 26: 219234.
  • Briggs W, McCormick S. 2000. A Multigrid Tutorial. Society for Industrial and Applied Mathematics.
  • Buckeridge S. 2010. Numerical solution of weather and climate systems: Elliptic solvers. PhD Thesis. University of Bath. Available at http://people.bath.ac.uk/masrs/publications.html.
  • Buckeridge S, Scheichl R. 2010. Parallel geometric multigrid for global weather predictions. Numer. Linear Algebra Appl. 17: 325342.
  • Ciarlet PG. 1978. The Finite Element Method for Elliptic Problems. North-Holland.
  • Cullen M. 2003. Four-dimensional variational data assimilation: A new formulation of the background-error covariance matrix, based on a potential-vorticity representation. Q. J. R. Meteorol. Soc. 129: 27772796.
  • Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N. 2005. A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 131: 17591782.
  • Eisenstat SC, Elman HC, Schultz M. 1983. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations. SIAM Journal on Numerical Analysis. 20: 345357.
  • Fisher M. 2003. Background error covariance modelling. ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, 8-12 Sept 2003, Reading, UK, pp. 4564.
  • Hackbusch W. 1985. Multi-Grid Methods and Applications. Springer.
  • Hoskins BJ, McIntyre ME, Robertson AW. 1985. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111: 877946.
  • Ingleby N. 2001. The statistical structure of forecast errors and its representation in the Met. Office global 3-D variational data assimilation scheme. Q. J. R. Meteorol. Soc. 127: 209232.
  • Katz D, Lawless A, Nichols N, Cullen M, Bannister R. 2011. Correlations of control varialbes in variational data assimilation. Q. J. R. Meteorol. Soc. 137: 620630.
  • Lorenc A. 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112: 11771194.
  • Rawlins F, Ballard S, Bovis K, Clayton A, Li D, Inverarity G, Lorenc A, Payne T. 2007. The Met Office global four-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc. 133 347362.
  • Saad Y. 2003. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics.
  • Trottenberg U, Oosterlee C, Schuller A. 2001. Multigrid. Academic Press.
  • van der Vorst H. 1992. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric systems. SIAM J. Sci. Statist. Comput. 13: 631644.
  • White A, Hoskins B, Roulstone I, Staniforth A. 2005. Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Q. J. R. Meteorol. Soc. 131: 20812108.
  • Wlasak M, Nichols N, Roulstone I. 2006. Use of potential vorticity for incremental data assimilation. Q. J. R. Meteorol. Soc. 132 28672886.