SEARCH

SEARCH BY CITATION

References

  • Andersson E, Fisher M, Munro R, McNally A. 2000. Diagnosis of background errors for radiances and other observable quantities in a variational data assimilation scheme, and the explanation of a case of poor divergence. Q. J. R. Meteorol. Soc. 126: 14551472.
  • Bannister RN. 2008. A review of forecast error covariances statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances. Q. J. R. Meteorol. Soc. 134: 19511970.
  • Belo Pereira M, Berre L. 2006. The use of an ensemble approach to study the background-error covariances in a global NWP model. Mon. Weather Rev. 134: 24662489.
  • Berre L, Desroziers G. 2010. Filtering of background-error variances and correlations by local spatial averaging. Mon. Weather Rev. 138: 36933720. (Special Collection.).
  • Berre L, Pannekoucke O, Desroziers G, Stefanescu E, Chapnik B, Raynaud L. 2007. ‘A variational assimilation ensemble and the spatial filtering of its error covariances: Increase of sample size by local spatial averaging’. In Proc. ECMWF Workshop on Flow-Dependent Aspects of Data Assimilation. ECMWF: Reading, UK; pp 151168.
  • Berre L, Desroziers G, Raynaud L, Montroty R, Gibier F. 2009. ‘Consistent operational ensemble variational assimilation’. Proceedings of the 5th WMO International Symposium on Data Assimilation, Melbourne, p 196.
  • Bonavita M, Raynaud L, Isaksen L. 2011. Estimating background-error variances with the ECMWF ensemble of data assimilation system: some effects of ensemble size and day-to-day variability. Q. J. R. Meteorol. Soc. 137: 423434.
  • Bouttier F, Derber J, Fisher M. 1997. ‘The 1997 revision of the Jb term in 3D/4D-var’, ECMWF Tech. Memo. Vol. 238. ECMWF: Reading, UK; p 54.
  • Buehner M, Houtekamer PL, Charette C, Mitchell HL, He B. 2010a. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part I: Description and single-observation experiments. Mon. Weather Rev. 138 15501566.
  • Buehner M, Houtekamer PL, Charette C, Mitchell HL, He B. 2010b. Intercomparison of variational data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month experiments with real observations. Mon. Weather Rev. 138: 15671586.
  • Courtier P, Geleyn JF. 1988. A global numerical weather model with variable resolution: application to the shallow-water equations. Q. J. R. Meteorol. Soc. 114: 13211346.
  • Courtier P, Freyder C, Geleyn JF, Rabier F, Rochas M. 1991. ‘The ARPEGE project at Meteo France’. In Proc. Seminar on Numerical Methods in Atmospheric Models, Vol. 2. ECMWF: Reading, UK; pp 193231.
  • Courtier P, Anderson E, Heckley W, Vasiljevic D, Hamrud M, Hollingsworth A, Rabier F, Fisher M, Pailleux J. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Q. J. R. Meteorol. Soc. 124: 17831807.
  • Daley R. 1985. The analysis of synoptic scale divergence by a statistical interpolation procedure. Mon. Weather Rev. 113: 10661079.
  • Dee D. 1995. On-line estimation of error covariance parameters for atmospheric data assimilation. Mon. Weather Rev. 123: 11281145.
  • Derber J, Bouttier F. 1999. A reformulation of the background-error covariance in the ECMWF global data assimilation system. Tellus 51A: 195221.
  • Fisher M. 2003. ‘Background error covariance modelling’. In Proceedings of the ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean. ECMWF: Reading, UK; pp 4563.
  • Fisher M. 2004. Generalized frames on the sphere, with applicationto background-error covariance modelling. In Proceedings of the ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean. ECMWF: Reading, UK; pp 87101.
  • Fisher M, Courtier P. 1995. Estimating the covariance matrices ofanalysis and forecast error in variational data assimilation’, ECMWF Tech. Memo., Vol. 220. ECMWF: Reading, UK; p 28.
  • Fisher M, Leutbecher M, Kelly GA. 2005. On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc. 131: 32353246.
  • Houtekamer PL, Lefaivre L, Derome J, Ritchie H, Mitchell HL. 1996. A system simulation approach to ensemble prediction. Mon. Weather Rev. 124: 12251442.
  • Ingleby N. 2001. The statistical structure of forecast errors and its representation in the Met. Office global 3-D variational data assimilation scheme. Q. J. R. Meteorol. Soc. 127: 209232.
  • McNally A. 2000. Estimates of short-term forecast-temperature error correlation and the implications for radiance-data assimilation. Q. J. R. Meteorol. Soc. 126: 361373.
  • Pannekoucke O, Berre L, Desroziers G. 2007. Filtering properties of wavelets for local background-error correlations. Q. J. R. Meteorol. Soc. 133: 363379.
  • Pannekoucke O, Berre L, Desroziers G. 2008. Background error correlation length-scale estimates and their sampling statistics. Q. J. R. Meteorol. Soc. 134: 497508.
  • Rabier F, McNally A, Anderson E, Courtier P, Undén P, Eyre J, Hollingsworth A, Bouttier F. 1998. The ECMWF implementation of three-dimensional variational assimilation (3D-Var). II: Structure functions. Q. J. R. Meteorol. Soc. 124: 18091829.
  • Raynaud L, Berre L, Desroziers G. 2009. Objective filtering of ensemble-based background-error variances. Q. J. R. Meteorol. Soc. 135A: 11771199.
  • Veersé F, Thépaut JN. 1998. Multiple-truncation incremental approach for four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc. 124: 18151846.
  • Xu Q, Lu H, Gao S, Xue M, Tong M. 2008. Time-expanded sampling for ensemble Kalman filter: Assimilation experiments with simulated radar observations. Mon. Weather Rev. 136: 26512667.