SEARCH

SEARCH BY CITATION

References

  • Bjerknes J. 1919. On the structure of moving cyclones. Gephys. Publ. 1(2): 18.
  • Bjerknes J, Solberg H. 1922. Life cycle of cyclones and the polar front theory of atmospheric circulation. Gephys. Publ. 3(1): 318.
  • Bluestein HB. 1986. Fronts and jet streaks: A theoretical perspective. In: Mesoscale Meteorology and Forecasting, RayPS (ed). American Meteorological Society: 173215.
  • Bluestein HB. 1993. Synoptic–Dynamic Meteorology in Midlatitudes. Volume II: Observations and Theory of Weather Systems. Oxford University Press.
  • Bosart LF. 1970. Mid-tropospheric frontogenesis. Q. J. R. Meteorol. Soc. 96: 442471.
  • Bosart LF. 2003. Tropopause folding, upper-level frontogenesis, and beyond. In: A Half Century of Progress in Meteorology: A Tribute to Richard Reed. @ Meteorological Monographs No. 53. American Meteorological Society: Boston, USA: 1347.
  • Davies HC, Schär C, Wernli H. 1991. The palette of fronts and cyclones within a baroclinic wave development. J. Atmos. Sci. 48: 16661689.
  • Davis CA, Emanuel KA. 1991. Potential vorticity diagnosis of cyclogenesis. Mon. Weather Rev. 119: 19291953.
  • Dudhia J. 1993. A nonhydrostatic version of the Penn State–NCAR mesoscale model: Validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121: 14931513.
  • Evans MS, Keyser D, Bosart LF, Lackmann GM. 1994. A satellite-derived classification scheme for rapid maritime cyclogenesis. Mon. Weather Rev. 122: 13811416.
  • Grell GA, Dudhia J, Stauffer DR. 1994. ‘A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5)’. NCAR Tech. Note NCAR/TN-398 + STR. NCAR, PO Box 3000, Boulder, CO 80 307-3000, USA.
  • Hartmann DL. 1995. A PV view of zonal flow vacillation. J. Atmos. Sci. 52: 25612576.
  • Hartmann DL, Zuercher P. 1998. Response of baroclinic life cycles to barotropic shear. J. Atmos. Sci. 52: 297313.
  • Hines KM, Mechoso CR. 1993. Influence of surface drag on the evolution of fronts. Mon. Weather Rev. 121: 11521175.
  • Keyser D, Pecnick MJ. 1985. A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci. 42: 12591282.
  • Keyser D, Shapiro MA. 1986. A review of the structure and dynamics of upper-level frontal zones. Mon. Weather Rev. 114: 452499.
  • Keyser D, Pecnick MJ, Shapiro MA. 1986. Diagnosis of the role of vertical deformation in a two-dimensional primitive equation model of upper-level frontogenesis. J. Atmos. Sci. 43: 839850.
  • Keyser D, Reeder MJ, Reed RJ. 1988. A generalization of Petterssen's frontogenesis function and its relation to the forcing of vertical motion. Mon. Weather Rev. 116: 762780.
  • Kuo Y-H, Low-Nam S. 1994. ‘Effects of surface friction on the thermal structure of an extratropical cyclone’. In: @ Proceedings, International Symposium on the Life Cycles of Extratropical Cyclones, vol. III, GrønS, ShapiroMA (eds). Geophysical Institute, University of Bergen: Norway: 129134.
  • Lackmann GM, Keyser D, Bosart LF. 1997. A characteristic life cycle of upper-tropospheric cyclogenetic precursors during the Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA). Mon. Weather Rev. 125: 27292758.
  • Martius O, Schwierz C, Davies HC. 2007. Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci (accepted).
  • McCallum E, Norris WJT. 1990. The storms of January and February 1990. Meteorol. Mag. 119: 201210.
  • Miller JE. 1948. On the concept of frontogenesis. J. Meteorol. 5: 169171.
  • Nakamura N. 1993. Momentum flux, flow symmetry, and the nonlinear barotropic governor. J. Atmos. Sci. 50: 21592179.
  • Newton CW. 1954. Frontogenesis and frontolysis as a three-dimensional process. J. Meteorol. 11: 449461.
  • Newton CW. 1958. Variations in frontal structure of upper level troughs. Geophysica 6: 357375.
  • Petterssen S. 1936. Contribution to the theory of frontogenesis. Gephys. Publ. 11(6): 127.
  • Reed RJ. 1955. A study of a characteristic type of upper-level frontogenesis. J. Meteorol. 12: 226237.
  • Reed RJ, Sanders F. 1953. An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteorol. 10: 338349.
  • Reeder MJ, Keyser D. 1988. Balanced and unbalanced upper-level frontogenesis. J. Atmos. Sci. 45: 33663386.
  • Rotunno R, Skamarock WC, Snyder C. 1994. An analysis of frontogenesis in numerical simulations of baroclinic waves. J. Atmos. Sci. 51: 33733398.
  • Rotunno R, Skamarock WC, Snyder C. 1998. Effects of surface drag on fronts within numerically simulated baroclinic waves. J. Atmos. Sci. 55: 21192129.
  • Sanders F, Bosart LF, Lai C-C. 1991. Initiation and evolution of an intense upper-level front. Mon. Weather Rev. 119: 13371367.
  • Schultz DM, Doswell CA. 1999. Conceptual models of upper-level frontogenesis in south-westerly and north-westerly flow. Q. J. R. Meteorol. Soc. 125: 25352562.
  • Schultz DM, Sanders F. 2002. Upper-level frontogenesis associated with the birth of mobile troughs in northwesterly flow. Mon. Weather Rev. 130: 25932610.
  • Schultz DM, Keyser D, Bosart LF. 1998. The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Weather Rev. 126: 17671791.
  • Shapiro MA. 1970. On the applicability of the geostrophic approximation to upper-level frontal-scale motions. J. Atmos. Sci. 27: 408420.
  • Shapiro MA. 1981. Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone systems. J. Atmos. Sci. 38: 954973.
  • Shapiro MA, Keyser D. 1990. ‘Fronts, jet streams and the tropopause’. In: Extratropical Cyclones, @ Erik Palmén Memorial Volume, NewtonCW, HolopainenEO (eds). American Meteorological Society: Boston, USA: 167191.
  • Shapiro M, Wernli H, Bao J-W, Methven J, Zou X, Doyle J, Holt J, Donall-Grell E, Neiman P. 1999. ‘A planetary-scale to mesoscale perspective of the life cycles of extratropical cyclones: The bridge between theory and observations’. In: The Life Cycles of Extratropical Cyclones, ShapiroMA, GrønS (eds). American Meteorological Society: Boston, USA: 139185.
  • Shapiro MA, Wernli H, Bond NA, Langland R. 2001. The influence of the 1997–99 El Nino Southern Oscillation on extratropical baroclinic life cycles over the eastern North Pacific. Q. J. R. Meteorol. Soc. 127: 331342.
  • Simmons A. 1999. ‘Numerical simulations of cyclone life cycles’. In: The Life Cycles of Extratropical Cyclones, ShapiroMA, GrønS (eds). American Meteorological Society: Boston, USA: 123137.
  • Simmons AJ, Hoskins BJ. 1978. The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci. 35: 414432.
  • Sinclair MR, Revell MJ. 2000. Classification and composite diagnosis of extratropical cyclogenesis events in the southwest Pacific. Mon. Weather Rev. 128: 10891105.
  • Thompson WT. 1995. Numerical simulations of the life cycle of a baroclinic wave. Tellus 47A: 722732.
  • Thorncroft CD, Hoskins BJ, McIntyre ME. 1993. Two paradigms of baroclinic-wave life-cycle behavior. Q. J. R. Meteorol. Soc. 119: 1755.
  • Wernli H, Fehlmann R, Lüthi D. 1998. The effect of barotropic shear on upper-level induced cyclogenesis: Semigeostrophic and primitive equation numerical simulations. J. Atmos. Sci. 55: 20802094.
  • Wernli H, Shapiro MA, Schmidli J. 1999. Upstream development in idealized baroclinic wave experiments. Tellus 51A: 574587.
  • Young MV. 1995. Types of cyclogenesis. In: Images in Weather Forecasting, BaderMJ, ForbesGS, GrantJR, LilleyRBE, WatersAJ (eds). Cambridge University Press: 213286.
  • Zhang F. 2004. Generation of mesoscale gravity waves in upper-tropospheric jet–front systems. J. Atmos. Sci. 61: 440457.