SEARCH

SEARCH BY CITATION

References

  • Bowler NE. 2008. Accounting for the effect of observation errors on verification of MOGREPS. Meteorol. Appl. 15: 199205.
  • Briggs W, Pocernich M, Ruppert D. 2005. Incorporating misclassification error in skill assessment. Mon. Weather Rev. 133: 33823392.
  • Buizza R, Palmer T. 1995. The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci. 52: 14341456.
  • Buizza R, Miller M, Palmer TN. 1999. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125: 28872908.
  • Buizza R, Richardson DS, Palmer TN. 2003. Benefits of increased resolution in the ECMWF ensemble system and comparison with poor-man's ensembles. Q. J. R. Meteorol. Soc. 129: 12691288.
  • Candille G, Talagrand O. 2005. Evaluation of probabilistic prediction systems for a scalar variable. Q. J. R. Meteorol. Soc. 131: 21312150.
  • Candille G, Talagrand O. 2008. Impact of observational error on the validation of ensemble prediction systems. Q. J. R. Meteorol. Soc. 134: 959971.
  • Cherubini T, Ghelli A, Lalaurette F. 2002. Verification of precipitation forecasts over the Alpine region using a high-density observing network. Weather Forecast. 17: 238249.
  • Ciach GJ, Krajewski WK. 1999. Radar–rain gauge comparisons under observational uncertainties. J. Appl. Meteor. 38: 15191525.
  • Cullen MJP. 1993. The unified forecast/climate model. Meteorol. Mag. 122: 8194.
  • Doms G, Schättler U. 1997. ‘The nonhydrostatic limited-area model LM (Lokal-Modell) of DWD. Part I: Scientific documentation’. Deutscher Wetterdienst, Offenbach, Germany, March 1997.
  • Dudhia J. 1993. A nonhydrostatic version of the Penn State–NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Weather Rev. 121: 14931513.
  • Ensor LA, Robeson SM. 2008. Statistical characteristics of daily precipitation: comparisons of gridded and point data sets. J. Appl. Meteorol. Climatol. 47: 24682476.
  • García-Moya JA, Callado A, Escribá P, Santos C, Santos-Muñoz D, Simarro J. 2011. Predictability of short-range forecasting: a multimodel approach. Tellus A 63: 550563.
  • Ghelli A, Lalaurette F. 2000. Verifying precipitation forecasts using upscaled observations. ECMWF Newsl. 87: 917.
  • Ghelli A, Primo C. 2009. On the use of the extreme dependency score to investigate the performance of a NWP model for rare events. Meteorol. Appl. 16: 537544.
  • Grell GA, Dudhia J, Stauffer DR. 1994. ‘A description of the fifth-generation Penn State/NCAR mesoscale model (MM5)’. NCAR Technical Note NCAR/TN-398+STR.
  • Gutiérrez JM, Cofiño AS, Cano R, Rodréguez MA. 2004. Clustering methods for statistical downscaling in short-range weather forecasts. Mon. Weather Rev. 132: 21692183.
  • Jakob C, Andersson E, Beljaars A, Buizza R, Fisher M, Gérard E, Ghelli A, Janssen P, Kelly G, McNally AP, Miller M, Simmons A, Teixeira J, Viterbo P. 2000. The IFS cycle CY21r4 made operational in October 1999. ECMWF Newsl. 87: 29.
  • Jolliffe IT, Stephenson DB. 2003. Forecast Verification: A Practitioner's Guide in Atmospheric Science. Wiley: New York.
  • Kharin VV, Zwiers FW. 2003. On the ROC score of probability forecasts. J. Climate 16: 41454150.
  • Majewski D, Schrodin R. 1994. Short description of the Europa-Modell (EM) and Deutschland Modell (DM) of the DWD. Deutscer Wetterdienst Quarterly Bulletin April, 78 pp.
  • Majewski D, Liermann D, Prohl P, Ritter B, Buchhold M, Hanisch T, Paul G, Wergen W, Baumgardner J. 2002. The operational Global Icosahedral–Hexagonal gridpoint model GME: description and high-resolution tests. Mon. Weather Rev. 130: 319338.
  • Mason SJ. 2004. On using ‘climatology’ as a reference strategy in the Brier and ranked probability skill scores. Mon. Weather Rev. 132: 18911895.
  • McDonald A, Haugen J. 1992. A two-time-level, three-dimensional semi-Lagrangian, semi-implicit, limited-area gridpoint model of the primitive equations. Mon. Weather Rev. 120: 26032621.
  • Pappenberger F, Ghelli A, Buizza R, Bódis K. 2009. The skill of probabilistic precipitation forecasts under observational uncertainties within the generalized likelihood uncertainty estimation framework for hydrological applications. J. Hydrometeorol. 10 807819.
  • Roberts NM, Lean HW. 2008. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 136: 7897.
  • Saetra Ø, Hersbach H, Bidlot J-R, Richardson DS. 2004. Effects of observation errors on the statistics for ensemble spread and reliability. Mon. Weather Rev. 132: 14871501.
  • Sela JG. 1982. ‘The NMC spectral model’. NOAA Technical Report NWS-30.
  • Sloughter JM, Raftery AE, Gneiting T, Fraley C. 2007. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Weather Rev. 135: 32093220.
  • Undén P, Rontu L, Järvinen H, Lynch P, Calvo J, Cats G, Cuxart J, Eerola K, Fortelius C, Garcia-Moya J-A, Jones C, Lenderlink G, McDonald A, McGrath R, Navascues B, Woetman Nielsen N, Degaard V, Rodriguez E, Rummukainen M, Rôôm R, Sattler K, Hansen Sass B, Savijärvi H, Wichers Schreur B, Sigg R, The H, Tijm A. 2002. ‘HIRLAM-5 scientific documentation’. Available from Hirlam-5 Project, c/o Per Undén, SMHI, Norrköping, Sweden.
  • Wilks DS. 2006. Statistical Methods in the Atmospheric Sciences (2nd edn). International Geophysics Series Vol. 91. Academic Press: New York, NY.
  • Ziehmann C. 2000. Comparison of a single-model EPS with a multimodel ensemble consisting of a few operational models. Tellus A 52 280299.