SEARCH

SEARCH BY CITATION

References

  • Adcroft A, Campin J-M, Hill C, Marshall J. 2004. Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon. Weather Rev. 132: 28452863.
  • Arakawa A, Lamb VR. 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Comput. Phys. 17: 174265.
  • Arakawa A, Moorthi S. 1988. Baroclinic instability in vertically discrete systems. J. Atmos. Sci. 45: 16881707.
  • Augenbaum J, Peskin C. 1985. On the construction of the Voronoi mesh on the sphere. J. Comput. Phys. 59: 177192.
  • Baba Y, Takahashi K, Sugimura T, Goto K. 2010. Dynamical core of an atmospheric general circulation model on a Yin-Yang grid. Mon. Weather Rev. 138: 39884005.
  • Bacon DP, Ahmad NN, Boybeyi Z, Dunn TJ, Hall MS, Lee PCS, Sarma RA, Turner MD, Waight KT, Young SH, Zack JW. 2000. A dynamically adapting weather and dispersion model: The Operational Multiscale Environment model with Grid Adaptivity (OMEGA). Mon. Weather Rev. 128: 20442076.
  • Berger MJ, Calhoun DA, Helzel C, LeVeque RJ. 2009. Logically rectangular finite volume methods with adaptive refinement on the sphere. Phil. Trans. R. Soc. A 367: 44834496.
  • Bernard P-E, Deleersnijder E, Legat V, Remacle J-F. 2008. Dispersion analysis of discontinuous Galerkin schemes applied to Poincaré, Kelvin and Rossby waves. J. Sci. Comput. 34: 2647.
  • Bernard P-E, Remacle J-F, Legat V. 2009a. Modal analysis on unstructured meshes of the dispersion properties of the PNC-P1 pair. Ocean Modelling 28: 211.
  • Bernard P-E, Remacle J-F, Comblen R, Legat V, Hillewaert K. 2009b. High-order discontinuous Galerkin schemes on general 2D manifolds applied to the shallow-water equations. J. Comput. Phys. 228: 65146535.
  • Bourke W. 1972. An efficient, one-level, primitive-equation spectral model. Mon. Weather Rev. 100: 683689.
  • Browning GL, Hack JJ, Swarztrauber PN. 1989. A comparison of three numerical methods for solving differential equations on the sphere. Mon. Weather Rev. 117: 10581075.
  • Calhoun DA, Helzel C, LeVeque RJ. 2008. Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains. SIAM Rev. 50: 723752.
  • Charney JG, Fjortoft R, von Neumann J. 1950. Numerical integration of the barotropic vorticity equation. Tellus 2: 237254.
  • Chen C, Xiao F. 2008. Shallow-water model on a cubed sphere by multi-moment finite volume method. J. Comput. Phys. 227: 50195044.
  • Comblen R, Legrand S, Deleersnijder E, Legat V. 2009. A finite-element method for solving the shallow-water equations on the sphere. Ocean Modelling 28: 1223.
  • Côté J, Gravel S, Méthot A, Patoine A, Roch M, Staniforth A. 1998. The operational CMC-MRB Global Environmental Muliscale (GEM) model. Part I: Design considerations and formulation. Mon. Weather Rev. 126: 13731395.
  • Coxeter HSM. (ed) 1973. Regular polytopes. Dover: New York.
  • Cullen MJP. 1974. Integrations of the primitive equations on a sphere using the finite-element method. Q. J. R. Meteorol. Soc. 100: 555592.
  • Cullen MJP, Hall CD. 1979. Forecasting and general circulation results from finite-element models. Q. J. R. Meteorol. Soc. 105: 571592.
  • Daley R. 1991. Atmospheric data analysis. Cambridge University Press: Cambridge, UK.
  • Danilov S. 2010. On the utility of triangular C-grid type discretization for numerical modeling of large-scale ocean flows. Ocean Dyn. 60: 13611369.
  • Davies T, Cullen MJP, Malcolm A, Mawson M, Staniforth A, White AA, Wood N. 2005. A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 131: 17591782.
  • Dee DP, Da Silva AM. 1986. Using Hough harmonics to validate and assess nonlinear shallow-water models. Mon. Weather Rev. 114: 21912196.
  • Dennis J, Fournier A, Spotz WF, St-Cyr A, Taylor MA, Thomas SJ, Tufo H. 2005. High resolution mesh convergence properties and parallel efficiency of a spectral element atmospheric dynamical core. Int. J. High Perf. Comput. Appl. 19: 225235.
  • Dudhia J, Bresch JF. 2002. A global version of the PSU-NCAR mesoscale model. Mon. Weather Rev. 130: 29893007.
  • Ford R, Pain CC, Piggott MD, Goddard AJH, de Oliveira CRE, Umpleby AP. 2004a. A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part 1: Model formulation. Mon. Weather Rev. 132: 28162831.
  • Ford R, Pain CC, Piggott MD, Goddard AJH, de Oliveira CRE, Umpleby AP. 2004b. A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part 2: Model validation. Mon. Weather Rev. 132: 28322844.
  • Fournier A, Taylor MA, Tribbia JJ. 2004. The Spectral Element Atmosphere Model (SEAM): High-resolution parallel computation and localized resolution of regional dynamics. Mon. Weather Rev. 132: 726748.
  • Fox-Rabinovitz MS. 1991. Computational dispersion properties of horizontal staggered grids for atmospheric and ocean models. Mon. Weather Rev. 119: 16241639.
  • Geleyn J-F, Caian M. 1997. Some limits to the variable-mesh solution and comparison with the nested-LAM solution. Q. J. R. Meteorol. Soc. 123: 743766.
  • Giraldo FX. 1997. Lagrange–Galerkin methods on spherical geodesic grids. J. Comput. Phys. 136: 197213.
  • Giraldo FX. 1998. The Lagrange–Galerkin spectral element method on unstructured quadrilateral grids. J. Comput. Phys. 147: 114146.
  • Giraldo FX. 2000. Lagrange–Galerkin methods on spherical geodesic grids: The shallow-water equations. J. Comput. Phys. 160: 336368.
  • Giraldo FX. 2001. A spectral element shallow-water model on spherical geodesic grids. Int. J. Num. Fluids 35: 869901.
  • Giraldo FX. 2005. Semi-implicit time-integrators for a scalable spectral element atmospheric model. Q. J. R. Meteorol. Soc. 131: 24312454.
  • Giraldo FX. 2006. High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere. J. Comput. Phys. 214: 447465.
  • Giraldo FX, Rosmond TE. 2004. A scalable spectral element Eulerian atmospheric model (SEE-AM) for NWP: Dynamical core tests. Mon. Weather Rev. 132: 133153.
  • Giraldo FX, Warburton T. 2005. A nodal triangle-based spectral element method for the shallow-water equations on the sphere. J. Comput. Phys. 207: 129150.
  • Giraldo FX, Hesthaven JS, Warburton T. 2002. Nodal high-order discontinuous Galerkin methods for the spherical shallow-water equations. J. Comput. Phys. 181: 499525.
  • Giraldo FX, Hesthaven JS, Warburton T. 2003. A spectral element semi-Lagrangian (SESL) method for the spherical shallow-water equations. J. Comput. Phys. 190: 623650.
  • Giraldo FX, Lauter M, Handorf D, Dethloff K. 2008. A discontinuous Galerkin method for the shallow-water equations using spherical triangular coordinates. J. Comput. Phys. 2227: 1022610243.
  • Gopalakrishnan SG, Bacon DP, Ahmad NN, Boybeyi Z, Dunn TJ, Hall MS, Jin Y, Lee PCS, Mays DE, Madala RV, Sarma RA, Turner MD, Wait TR. 2002. An operational multiscale hurricane forecasting system. Mon. Weather Rev. 130: 18301847.
  • Haltiner GJ, Williams RT. 1980. Numerical Prediction and Dynamic Meteorology. John Wiley & Sons: New York.
  • Hanert E, Walters RA, Le Roux DY, Pietrzak JD. 2009. A tale of two elements: P1NC-P1 and RT0. Ocean Modelling 28: 2433.
  • Harris LM, Lauritzen PH, Mittal R. 2011. A flux-form version of the conservative semi-Lagrangian multi-tracer transport scheme (CSLAM) on the cubed sphere grid. J. Comput. Phys. 230: 12151237.
  • Heikes R, Randall DA. 1995a. Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Weather Rev. 123: 18621880.
  • Heikes R, Randall DA. 1995b. Numerical integration of the shallow-water equations on a twisted icosahedral grid. Part II: A detailed description of the grid and an analysis of numerical accuracy. Mon. Weather Rev. 123: 18811887.
  • Hoskins BJ, Simmons AJ. 1975. A multi-layer spectral model and the semi-implicit method. Q. J. R. Meteorol. Soc. 101: 637655.
  • Hough SS. 1897. On the application of harmonic analysis to the dynamical theory of the tides. Part II: On the general integration of Laplace's dynamical equations. Phil. Trans. R. Soc. London 191A: 139185.
  • Hyman JM, Shashkov M. 1997. Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Computers Math. Applic. 33: 81104.
  • Ii S, Xiao F. 2010. A global shallow-water model using a high-order multi-moment constrained finite-volume method and icosahedral grid. J. Comput. Phys. 229: 17741796.
  • Itoh T, Shimada K. 2002. Automatic conversion of triangular meshes into quadrilateral meshes with directionality. Int. J. CAD/CAM 1: 121.
  • Jablonowski C, Williamson DL. 2011. The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. In Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering 80. Lauritzen PH, Jablonowski C, Taylor MA, Nair RD. (eds) Springer: Berlin. 389504.
  • Joe B. 1995. Quadrilateral mesh generation in polygonal regions. Computer-Aided Design 27: 209222.
  • Kageyama A. 2005. Dissection of a sphere and Yin-Yang grids. J. Earth Simulator 3: 2028.
  • Kageyama A, Sato T. 2004. The Yin-Yang grid: An overset grid in spherical geometry. Geochem. Geophys. Geosyst. 5: Q09005.
  • Kurihara Y. 1965. Numerical integration of the primitive equations on a spherical grid. Mon. Weather Rev. 93: 399415.
  • Lanser D, Blom JG, Verwer JG. 2000. Spatial discretization of the shallow-water equations in spherical geometry using Osher's scheme. J. Comput. Phys. 165: 542565.
  • Lau TS, Lo SH, Lee CK. 1997. Generation of quadrilateral mesh over analytical curved surfaces. Finite Elements Anal. Design 27: 251272.
  • Lauritzen PH, Nair RD. 2008. Monotone and conservative cascade remapping between spherical grids (CaRS): Regular latitude–longitude and cubed-sphere grids. Mon. Weather Rev. 136: 14161432.
  • Lauritzen PH, Jablonowski C, Taylor MA, Nair RD. 2010a. Rotated versions of the Jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison. J. Adv. Model. Earth Syst. 2: Art. 15, 34 pp.
  • Lauritzen PH, Nair RD, Ullrich PA. 2010b. A Conservative Semi-Lagrangian Multi-tracer transport scheme (CSLAM) on the cubed-sphere grid. J. Comput. Phys. 229: 14011424.
  • Lauritzen PH, Jablonowski C, Taylor MA, Nair RD. (eds) 2011. Numerical Techniques for Global Atmospheric Models. Lecture Notes in Computational Science and Engineering 80. Springer: Berlin.
  • Läuter M, Handorf D, Rakowsky N, Behrens J, Frickenhaus S, Best M, Dethloff K, Hiller W. 2007. A parallel adaptive barotropic model of the atmosphere. J. Comput. Phys. 223: 609628.
  • Läuter M, Giraldo FX, Handorf D, Dethloff K. 2008. A discontinuous Galerkin method for the shallow-water equations in spherical triangular coordinates. J. Comput. Phys. 227: 1022610242.
  • Le Roux DY. 2005. Dispersion relation analysis of the PNC-P1 finite-element pair in shallow-water models. SIAM J. Sci. Comput. 27: 394414.
  • Le Roux DY, Staniforth A, Lin CA. 1998. Finite elements for shallow-water equation ocean models. Mon. Weather Rev. 126: 19311951.
  • Le Roux DY, Rostand V, Pouliot B. 2007. Analysis of numerically induced oscillations in 2D finite-element shallow-water models Part I: Inertia-gravity waves. SIAM J. Sci. Comput. 29: 331360.
  • Le Roux DY, Rostand V, Pouliot B. 2008. Analysis of numerically induced oscillations in 2D finite-element shallow-water models Part II: Free planetary waves. SIAM J. Sci. Comput. 30: 19701991.
  • Lee J-L, MacDonald AE. 2009. A finite-volume icosahedral shallow-water model on a local coordinate. Mon. Weather Rev. 137: 14221437.
  • Lee LP. 1976. Conformal projections based on elliptic functions. Monograph No. 16, University of Toronto Press: Toronto, Canada. Canad. Cartogr. Suppl. 13: 1128.
  • Leopardi P. 2006. A partition of the unit sphere into regions of equal area and small diameter. Electron. Trans. Numer. Anal. 25: 309327.
  • Li X, Chen D, Peng X, Takahashi K, Xiao F. 2008. A multimoment finite-volume shallow-water model on the Yin-Yang overset spherical grid. Mon. Weather Rev. 136: 30663086.
  • Loisel S, Côté J, Gander MJ, Laayouni L, Qaddouri A. 2010. Optimized domain decomposition methods for the spherical Laplacian. SIAM J. Numer. Anal. 48: 524551.
  • Majewski D, Liermann D, Prohl P, Ritter B, Buchhold M, Hanisch T, Paul G, Wergen W, Baumgardner J. 2002. The operational global icosahedral-hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Weather Rev. 130: 319338.
  • Marchesin D. 1984. Using exact solutions to develop an implicit scheme for the baroclinic primitive equations. Mon. Weather Rev. 112: 269277.
  • Masuda Y, Ohnishi H. 1986. An integration scheme of the primitive equations model with an icosahedral-hexagonal grid system and its application to shallow-water equations. In Short and Medium Range Numerical Weather Prediction. Matsuno T. (ed.) Japan Meteorological Society: Tokyo. 237240.
  • McGregor JL. 1996. Semi-Lagrangian advection on conformal-cubic grids. Mon. Weather Rev. 124: 13111322.
  • McGregor JL. 1997. Semi-Lagrangian advection on a cubic gnomonic projection of the sphere. In Numerical Methods in Atmospheric and Oceanic Modelling, the André J. Robert memorial volume. Lin CA, Laprise R, Ritchie H. (eds) CMOS/NRC Press: Ottawa, Canada. 153169.
  • McGregor JL. 2005. ‘C-CAM: Geometric aspects and dynamical formulation’. Tech. report 70. CSIRO Atmospheric Research: Aspendale, Australia.
  • Mesinger F, Arakawa A. 1976. Numerical methods used in atmospheric models. GARP Pub. Series No. 17 1. World Meteorological Organisation: Geneva.
  • Miura H, Kimoto M. 2005. A comparison of grid quality of optimized spherical hexagonal-pentagonal geodesic grids. Mon. Weather Rev. 133: 28172833.
  • Murray RJ. 1996. Explicit generation of orthogonal grids for ocean models. J. Comput. Phys. 126: 251273.
  • Nair RD, Thomas SJ, Loft RD. 2005a. A discontinuous Galerkin global shallow-water model. Mon. Weather Rev. 133: 876888.
  • Nair RD, Thomas SJ, Loft RD. 2005b. A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Weather Rev. 133: 814828.
  • Neta B, Williams RT. 1989. Rossby wave frequencies and group velocities for finite-element and finite-difference approximations to the vorticity-divergence and primitive forms of the shallow-water equations. Mon. Weather Rev. 117: 14391457.
  • Ničković S. 1994. On the use of hexagonal grids for simulation of atmospheric processes. Contrib. Atmos. Phys. 67: 103107.
  • Ničković S, Gavrilov M, Tošić I. 2002. Geostrophic adjustment on hexagonal grids. Mon. Weather Rev. 22: 668683.
  • Pain CC, Piggott MD, Goddard AJH, Fang F, Gorman GJ, Marshall DP, Eaton MD, Power PW, de Oliveira CRE. 2005. The numerical solution of parabolic and elliptic differential equations. Ocean Modelling 10: 533.
  • Peng XD, Xiao F, Takahashi K. 2006. Conservative constraint for a quasi-uniform overset grid on the sphere. Q. J. R. Meteorol. Soc. 132: 979996.
  • Phillips NA. 1957. A map projection system suitable for large-scale numerical weather prediction. J. Meteorol. Soc. Japan 35: (75th anniversary issue) 262267.
  • Phillips NA. 1959. Numerical integration of the primitive equations on the hemisphere. Mon. Weather Rev. 87: 333345.
  • Phillips NA. 1962. ‘Numerical integration of the hydrostatic system of equations with a modified version of the Eliassen finite-difference grid’. In Proceedings of Internat. Symposium on NWP, Tokyo. 109120.
  • Piggott MD, Pain CC, Gorman GJ, Power PW, Goddard AJH. 2005. h, r, and hr adaptivity with applications in numerical ocean modelling. Ocean Modelling 10: 95113.
  • Purser RJ, Rančić M. 1997. Conformal octagon: An attractive framework for global models offering quasi-uniform regional enhancement of resolution. Meteorol. Atmos. Phys. 62: 3348.
  • Purser RJ, Rančić M. 1998. Smooth quasi-homogeneous gridding of the sphere. Q. J. R. Meteorol. Soc. 124: 637647.
  • Putman WM, Lin S-J. 2007. Finite-volume transport on various cubed-sphere grids. J. Comput. Phys. 227: 5578.
  • Qaddouri A. 2011. Nonlinear shallow-water equations on the Yin-Yang grid. Q. J. R. Meteorol. Soc. 137: 810818.
  • Qaddouri A, Lee V. 2011. The Canadian Global Environmental Multiscale model on the Yin-Yang grid system. Q. J. R. Meteorol. Soc. 137: 19131926, DOI: 10.1002/qj.873.
  • Qaddouri A, Laayouni L, Loisel S, Côté J, Gander MJ. 2008. Optimized Schwarz methods with an overset grid for the shallow-water equations: Preliminary results. Appl. Numer. Math. 58: 459471.
  • Qaddouri A, Pudykiewicz J, Tanguay M, Girard C, Côté J. 2011. Experiments with different discretizations for the shallow-water equations on the sphere. Q. J. R. Meteorol. Soc. DOI: 10.1002/qj.976.
  • Rančić M, Purser RJ, Mesinger F. 1996. A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Q. J. R. Meteorol. Soc. 122: 959982.
  • Randall DA. 1994. Geostrophic adjustment and the finite-difference shallow-water equations. Mon. Weather Rev. 122: 13711377.
  • Randall DA, Ringler T, Heikes R, Jones P, Baumgardner J. 2002. Climate modeling with spherical geodesic grids. Comput. Sic. Eng. 4: 3241.
  • Ringler T, Randall DA. 2002a. A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid. Mon. Weather Rev. 130: 13971410.
  • Ringler T, Randall DA. 2002b. The ZM grid: An alternative to the Z grid. Mon. Weather Rev. 130: 14111422.
  • Ringler TD, Heikes R, Randall DA. 2000. Modelling the atmospheric general circulation using a spherical geodesic grid: a new class of dynamical cores. Mon. Weather Rev. 128: 24712490.
  • Ringler TD, Thuburn J, Klemp JB, Skamarock WC. 2010. A unified approach to energy and potential vorticity dynamics for arbitrarily structured C-grids. J. Comput. Phys. 229: 30653090.
  • Ringler TD, Jacobsen D, Gunzberger M, Ju L, Duda M, Skamarock WC. 2011. Exploring a multi-resolution modeling approach within the shallow-water equations. Mon. Weather Rev. 139: in press.
  • Ritchie H, Tanguay M. 1996. A comparison of spatially averaged Eulerian and semi-Lagrangian treatments of mountains. Mon. Weather Rev. 124: 167181.
  • Rivest C, Staniforth A, Robert A. 1994. Spurious resonant response of semi-Lagrangian discretizations to orographic forcing: Diagnosis and solution. Mon. Weather Rev. 122: 366376.
  • Ronchi C, Iacono R, Paolucci PS. 1996. The cubed sphere: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124: 93114.
  • Rossmanith JA. 2006. A wave propagation method for hyperbolic systems on the sphere. J. Comput. Phys. 213: 629658.
  • Sadourny R. 1972. Conservative finite-differencing approximations of the primitive equations on quasi-uniform spherical grids. Mon. Weather Rev. 100: 136144.
  • Sadourny R, Arakawa A, Mintz Y. 1968. Integration of the nondivergent barotropic vorticity equation with an icosahedral-hexagonal grid for the sphere. Mon. Weather Rev. 96: 351356.
  • Sasaki YK. 1976. Variational design of finite-difference schemes for initial value problems with an integral constraint. J. Comput. Phys. 21: 270278.
  • Satoh M, Matsuno T, Tomita H, Miura H, Nasuno T, Iga S. 2008. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud-resolving simulations. J. Comput. Phys. 227: 34863514.
  • Schmidt F. 1977. Variable fine mesh in a spectral global model. Beitr. Phys. Atmos. 50: 211217.
  • Schneider EK. 1987. An inconsistency in vertical discretization in some atmospheric models. Mon. Weather Rev. 115: 21662169.
  • Schoenstadt AL. 1980. A transfer function analysis of numerical schemes used to simulate geostrophic adjustment. Mon. Weather Rev. 108: 12481259.
  • Slingo J, Bates K, Nikiforakis N, Piggott M, Roberts M, Shaffrey L, Stevens I, Vidale PL, Weller H. 2009. Developing the next-generation climate system models: Challenges and achievements. Phil. Trans. R. Soc. A 367: 815831.
  • St-Cyr A, Jablonowski C, Dennis JM, Tufo HM, Thomas SJ. 2008. A comparison of two shallow-water models with non-conforming adaptive grids. Mon. Weather Rev. 136: 18981922.
  • Staniforth A. 1997. André Robert (1929–1993): His pioneering contributions to numerical modelling. In Numerical Methods in Atmospheric and Oceanic Modelling, the André J. Robert memorial volume. Lin CA, Laprise R, Ritchie H. (eds) CMOS/NRC Press: Ottawa, Canada. 2554.
  • Staniforth A, Côté J. 1991. Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Weather Rev. 119: 22062223.
  • Staniforth A, Daley RW. 1979. A baroclinic finite element model for regional forecasting with the primitive equations. Mon. Weather Rev. 107: 107121.
  • Staniforth A, Mitchell HL. 1977. A semi-implicit finite-element barotropic model. Mon. Weather Rev. 105: 154169.
  • Staniforth A, Mitchell HL. 1978. A variable resolution finite-element technique for regional forecasting with the primitive equations. Mon. Weather Rev. 106: 439447.
  • Staniforth A, Wood N. 2008. Aspects of the dynamical core of a non-hydrostatic, deep-atmosphere, unified weather and climate prediction model. J. Comput. Phys. 227: 34453464.
  • Staniforth AN, Williams RT, Neta B. 1993. Influence of linear depth variation on Poincaré, Kelvin, and Rossby waves. J. Atmos. Sci. 50: 929940.
  • Starius G. 1980. On composite mesh difference methods for hyperbolic differential equations. Numer. Math. 35: 241255.
  • Stuhne GR, Peltier WR. 1999. New icosahedral grid-point discretizations of the shallow-water equations on the sphere. J. Comput. Phys. 148: 2358.
  • Swinbank R, Purser RJ. 2006. Fibonacci grids: A novel approach to global modelling. Q. J. R. Meteorol. Soc. 132: 17691793.
  • Tanguay M, Yakimiw E, Ritchie H, Robert A. 1992. Advantages of spatial averaging in semi-implicit semi-Lagrangian schemes. Mon. Weather Rev. 120: 113123.
  • Taylor MA, Fournier A. 2010. A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys. 229: 58795895.
  • Taylor MA, Tribbia J, Iskandarani M. 1997. The spectral element method for the shallow-water equations on the sphere. J. Comput. Phys. 130: 92108.
  • Temperton C, Hortal M, Simmons A. 2001. A two-time-level semi-Lagrangian global spectral model. Q. J. R. Meteorol. Soc. 127: 111128.
  • Thomas SJ, Loft RD. 2000. Parallel semi-implicit spectral element methods for atmospheric general circulation models. J. Sci. Comput. 15: 499518.
  • Thomas SJ, Loft RD. 2002. Semi-implicit spectral element method for the shallow-water equations on the sphere. J. Sci. Comput. 17: 339350.
  • Thomas SJ, Loft RD. 2005. The NCAR spectral element climate dynamical core: Semi-implicit Eulerian formulation. J. Sci. Comput. 25: 307322.
  • Thuburn J. 1997. A PV-based shallow-water model on a hexagonal-icosahedral grid. Mon. Weather Rev. 125: 23282347.
  • Thuburn J. 2007. Rossby wave dispersion on the C-grid. Atmos. Sci. Lett. 8: 3742.
  • Thuburn J. 2008a. Numerical wave propagation on the hexagonal C-grid. J. Comput. Phys. 227: 58365858.
  • Thuburn J. 2008b. Some conservation issues for the dynamical cores of NWP and climate models. J. Comput. Phys. 227: 37153730.
  • Thuburn J, Li Y. 2000. Numerical simulations of Rossby–Haurwitz waves. Tellus 52A: 181189.
  • Thuburn J, Staniforth A. 2004. Conservation and linear Rossbymode dispersion on the spherical C-grid. Mon. Weather Rev. 132 641653.
  • Thuburn J, Ringler TD, Skamarock WC, Klemp JB. 2009. Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comput. Phys. 228: 83218335.
  • Tolstykh MA. 2003. Variable resolution global semi-Lagrangian atmospheric model. Russian J. Numer. Anal. Math. Modelling 18: 347361.
  • Tomita H, Satoh M. 2004. A new dynamical framework of nonhydrostatic global model using icosahedral grid. Fluid Dyn. Res. 34: 357400.
  • Tomita H, Tsugawa M, Satoh M, Goto K. 2001. Shallow-water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comput. Phys. 174: 539613.
  • Tomita H, Satoh M, Goto K. 2002. An optimization of the icosahedral grid modified by spring dynamics. J. Comput. Phys. 183: 307331.
  • Ullrich PA, Lauritzen PH, Jablonowski C. 2009. Geometrically Exact Conservative Remapping (GECoRe): Regular latitude–longitude and cubed-sphere grids. Mon. Weather Rev. 137: 17211741.
  • Ullrich PA, Jablonowski C, van Leer B. 2010. High-order finite-volume methods for the shallow-water equations on the sphere. J. Comput. Phys. 229: 61046134.
  • Wajsowicz RC. 1986. Free planetary waves in finite-difference numerical models. J. Phys. Ocean. 16: 773789.
  • Walko RL, Avissar R. 2008a. The Ocean–Land–Atmosphere Model (OLAM). Part I: Shallow-water tests. Mon. Weather Rev. 136: 40334044.
  • Walko RL, Avissar R. 2008b. The Ocean–Land–Atmosphere Model (OLAM). Part II: Formulation and tests of the nonhydrostatic dynamic core. Mon. Weather Rev. 136: 40454062.
  • Walters RA, Carey GF. 1983. Analysis of spurious oscillation modes for the shallow-water and Navier-Stokes equations, Computers and Fluids 11: 5168.
  • Wang H, Tribbia JJ, Baer F, Fournier A, Taylor MA. 2007. A spectral element version of CAM2. Mon. Weather Rev. 135: 38253840.
  • Weller H, Weller HG. 2008. A high-order arbitrarily unstructured finite-volume model of the global atmosphere: Tests solving the shallow-water equations. Int. J. Num. Meth. Fluids 56: 15891596.
  • Weller H, Weller HG, Fournier A. 2009. Voronoi, Delaunay and block structured mesh refinement for solution of the shallow-water equations on the sphere. Mon. Weather Rev. 137: 42084224.
  • Weller H, Ringler T, Piggott M, Wood N. 2010. Challenges facing adaptive mesh modeling of the atmosphere and ocean. Bull. Amer. Meteorol. Soc. 91: 105108.
  • White AA. 1997. Plato, polyhedra and weather forecasting. In Mathematics masterclasses. Stretching the imagination. Sewell M. (ed.) Oxford University Press: Oxford, UK. 194215.
  • Wiin-Nielsen A. 1976. On geostrophic adjustment on the sphere. Beitr. Phys. Atmos. 49: 254271.
  • Williams RT. 1981. On the formulation of finite-element prediction models. Mon. Weather Rev. 109: 463466.
  • Williamson DL. 1968. Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus 20: 642653.
  • Williamson DL. 1969. Numerical integration of fluid flow over triangular grids. Mon. Weather Rev. 97: 885895.
  • Williamson DL. 1970. Integration of the primitive barotropic model over a spherical geodesic grid. Mon. Weather Rev. 98: 512520.
  • Williamson DL. 1971. A comparison of first- and second-order difference approximations over a spherical geodesic grid. J. Comput. Phys. 7: 301309.
  • Williamson DL. 1997. Climate simulations with a spectral, semi-Lagrangian model with linear grids. In Numerical Methods in Atmospheric and Oceanic Modelling, The André J. Robert memorial volume. Lin CA, Laprise R, Ritchie H. (eds). CMOS/NRC Press: Ottawa, Canada. 279292.
  • Williamson DL. 2007. The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Japan 85B: 241269.
  • Williamson DL, Drake JB, Hack JJ, Jakob R, Swarztrauber PN. 1992. A standard test set for numerical approximations to the shallow-water equations in spherical geometry. J. Comput. Phys. 102: 211224.
  • Winninghoff FJ. 1968. ‘On the adjustment toward a geostrophic balance in a simple promitive-equation model with application to the problem of initialization and objective analysis’. PhD thesis. Department of Meteorology: University of California, Los Angeles.
  • Yang C, Cao JW, Cai XC. 2010. A fully implicit domain decomposition algorithm for shallow-water equations on the cubed-sphere. SIAM J. Sci. Comput. 32: 418438.
  • Zerroukat M, Wood N, Staniforth A. 2004. SLICE-S: A Semi-Lagrangian Inherently Conserving and Efficient scheme for transport problems on the Sphere. Q. J. R. Meteorol. Soc. 130: 26492664.
  • Zhang R-H, Shen X-S. 2008. On the development of the GRAPES—A new generation of the national operational NWP system in China. Chinese Sci. Bull. 53: 34293432.