SEARCH

SEARCH BY CITATION

References

  • Arakawa A, Schubert WH. 1974. Interactions of a cumulus cloud ensemble with the large-scale environment. Part 1. J. Atmos. Sci. 31: 674701.
  • Bechtold P, Chaboureau J-P, Beljaars A, Betts AK, Kohler M, Miller M, Redelsperger J-L. 2004. The simulation of the diurnal cycle of convective precipitation over land in a global model. Q. J. R. Meteorol. Soc. 130: 31193137.
  • Bellouin N, Boucher O, Haywood J, Johnson C, Jones A, Rae J, Woodward S. 2007. ‘Improved representation of aerosols for HadGEM2’. Hadley Centre Technical Note 73. Met Office: Exeter, UK.
  • Cullen MJP. 1993. The unified forecast/climate model. Meteorol. Mag. 122: 8194.
  • Dai A, Lin X, Hsu KL. 2007. The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Clim. Dynam. 29: 727744.
  • Del Genio AD, Wu J. 2010. The role of entrainment in the diurnal cycle of continental convection J. Climate 23: 27222738.
  • Derbyshire SH, Maidens AV, Milton SF, Stratton RA, Willett M. 2011. Adaptive detrainment in a convective parametrization. Q. J. R. Meteorol. Soc. 137: 18561871.
  • Edwards JM, Slingo A. 1996. Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Q. J. R. Meteorol. Soc. 122: 689720.
  • Emanuel KA. 1991. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 48: 23132335.
  • Essery R, Best M, Cox P. 2001. ‘MOSES 2.2 technical documentation’. Hadley Centre Technical Note 30. Met Office: Exeter, UK.
  • Fritsch J, Chappell C. 1980. Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. J. Atmos. Sci. 37: 17221733.
  • Gates WL, Boyle JS, Covey C, Dease CG, Doutriaux CM, Drach RS, Fiorino M, Gleckler J, Hnilo JJ, Marlais SM, Phillips TJ, Potter GL, Santer BD, Sperber KR, Taylor KE, Williams DN. 1999. An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Am. Meteorol. Soc. 80: 2955.
  • Grabowski WW, Bechtold P, Cheng A, Forbes R, Halliwell C, Khairoutdinov M, Lang S, Nasuno T, Petch J, Tao W-K, Wong R, Wu X, Xu K-M. 2006. Daytime convective development over land: A model intercomparison based on LBA observations. Q. J. R. Meteorol. Soc. 132: 317344.
  • Grant ALM. 2001. Cloud-base fluxes in the cumulus-capped boundary layer. Q. J. R. Meteorol. Soc. 127: 407421.
  • Grant ALM, Brown AR. 1999. A similarity hypothesis for shallow-cumulus transports. Q. J. R. Meteorol. Soc. 125: 19131936.
  • Gregory D, Allen S. 1991. ‘The effect of convective downdraughts upon NWP and climate simulations’. In Ninth Conference on Numerical Weather Prediction, Denver, CO; 122123.
  • Gregory D, Rowntree PR. 1990. A mass-flux convection scheme with representation of cloud ensemble characteristics and stability dependent closure. Mon. Weather Rev. 118: 14831506.
  • Gregory D, Kershaw R, Inness PM. 1997. Parametrization of momentum transport by convection. II: Tests in single column and general circulation models. Q. J. R. Meteorol. Soc. 123: 11531183.
  • Guichard F, Petch JC, Redelsperger J-L, Bechtold P, Chaboureau J-P, Cheient S, Grabowski W, Grenier H, Jones CG, Kohler M, Piriou J-M, Tailleux R, Tomasimni M. 2004. Modelling the diurnal cycle of deep precipitating convection over land with cloud-resolving models and single-column models. Q. J. R. Meteorol. Soc. 130: 31393172.
  • Hirose M. Oki R, Shimizu S, Kachi M, Higashiuwatoko T. 2008. Finescale diurnal rainfall statistics refined from eight years of TRMM PR data. J. Appl. Meteorol. Clim. 47: 544561.
  • Khairoutdinov M, Randall D. 2006. High-resolution simulations of shallow-to-deep convection transition over land. J. Atmos. Sci. 63: 34213436.
  • Kuang Z, Bretherton CS. 2006. A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci. 63: 18951909.
  • Lin X, Randall DA, Fowler LD. 2000. Diurnal variability of the hydrological cycle and radiative fluxes: comparisons between observations and a GCM. J. Climate 13: 41594179.
  • Lock AP, Brown AR, Bush MR, Martin GM, Smith RNB. 2000. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Mon. Weather Rev. 128: 31873199.
  • Rio C, Hourdin F, Grandpeix J-Y, Lafore J-P. 2009. Shifting the diurnal cycle of parametrized deep convection over land. Geophys. Res. Lett. 36: L07809, DOI: 10.1029/2008GL036779.
  • Simpson J. 1971. On cumulus entrainment and one-dimensional models. J. Atmos. Sci. 28: 449455.
  • Simpson J, Wiggert V. 1969. Models of precipitating cumulus towers. Mon. Weather Rev. 97: 471489.
  • Simpson J, Adler RF, North GR. 1988. Proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Am. Meteorol. Soc. 69: 278295.
  • Smith RNB. 1990. A scheme for predicting layer clouds and their water content in a general circulation model. Q. J. R. Meteorol. Soc. 116: 435460.
  • Smith RNB. 1993. ‘Experience and developments with the layer cloud and boundary layer mixing schemes in the UK Meteorological Office Unified Model’. In ECMWF/GCSS Workshop on Parametrization of the Cloud-Topped Boundary Layer. ECMWF: Reading, UK.
  • Stirling A, Stratton RA. 2011. Entrainment processes in the diurnal cycle of deep convection over land. Q. J. R. Meteorol. Soc. DOI: 10.1002/qj.1868 (in press).
  • Stratton RA, Stirling AJ, Derbyshire S. 2009. Changes and developments to convective momentum transport (CMT) parametrization based on analysis of CRM and SCM. Met R&D Technical Note 530. Met Office: Exeter, UK. http://www.metoffice.gov.uk/publications.
  • Taylor KE. 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106: 71837192.
  • Tiedtke M. 1989. A comprehensive mass flux scheme for cumulus parametrization in large-scale models. Mon. Weather Rev. 117: 17791800.
  • Tokioka T, Yamazaki K, Kitoh A, Ose T. 1988. The equatorial 30–60 day oscillation and the Arakawa–Schubert penetrative cumulus parameterization. J. Meteorol. Soc. Japan 66: 883901.
  • Wang Y, Zhou L, Hamilton K. 2007. Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon. Weather Rev. 135: 567585.
  • Webster S, Brown AR, Cameron DR, Jones CP. 2003. Improvements to the representation of orography in the Met Office Unified Model. Q. J. R. Meteorol. Soc. 129: 19892010.
  • Wielicki BA, Barkstrom BR, Harrison EF, Lee RB III, Smith GL, Cooper JE. 1996. Clouds and the Earth's Radiant Energy System (CERES): an Earth observing system experiment. Bull. Am. Meteorol. Soc. 77: 853868.
  • Wilson DR, Ballard SP. 1999. A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc. 125: 16071636.
  • Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ. 2008a. PC2: a prognostic cloud fraction and condensation scheme. I: Scheme description. Q. J. R. Meteorol. Soc. 134: 20932107.
  • Wilson DR, Bushell AC, Kerr-Munslow AM, Price JD, Morcrette CJ, Bodas-Salcedo A. 2008b. PC2: a prognostic cloud fraction and condensation scheme. II: Climate model simulations. Q. J. R. Meteorol. Soc. 134: 21092125.
  • Woodward S. 2001. Modelling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J. Geophys. Res. 106: 1815518166.
  • Xie P, Arkin PA. 1997. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78: 25392558.
  • Yang G-Y, Slingo JM. 2001. The diurnal cycle in the Tropics. Mon. Weather Rev. 129: 784801.
  • Yang S, Smith EA. 2006. Mechanisms for diurnal variability of global tropical rainfall observed from TRMM. J. Climate 19 51905226.
  • Zhang Y, Klein SA. 2010. Mechanisms affecting the transition from shallow to deep convection over land: inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains Site. J. Atmos. Sci. 67: 29432959.