Influence of many-body interactions on resistance of a grain boundary with respect to a sliding shift



We performed nonempirical simulations of the properties of the tungsten Σ3(111) grain boundary (GB) with a boron atom and demonstrate the influence of many-body interactions on the resistance of the GB with respect to sliding. We also studied the propagation of relaxations in the vicinity of the GB. The many-body interatomic potentials (IP) used in these simulations were obtained with the recursion procedure from ab initio total energy calculations. At each step of the slip process, the equilibrium positions of the atoms near GB were calculated with the generalized simulated annealing technique. It was demonstrated how the sliding shift influences the penetration of the elastic field inside the grain. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002